Exact solutions to the quantum many-body problem using the geminal
density matrix
- URL: http://arxiv.org/abs/2112.11400v3
- Date: Wed, 20 Apr 2022 20:56:27 GMT
- Title: Exact solutions to the quantum many-body problem using the geminal
density matrix
- Authors: Nicholas Cox
- Abstract summary: Two-body reduced density matrix (2-RDM) formalism reduces coordinate dependence to that of four particles.
Errors arise in this approach because the 2-RDM cannot practically be constrained to guarantee that it corresponds to a valid wave function.
We show how this technique is used to diagonalize atomic Hamiltonians, finding that the problem reduces to the solution of $sim N(N-1)/2$ two-electron eigenstates of the Helium atom.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is virtually impossible to directly solve the Schr\"odinger equation for a
many-electron wave function due to the exponential growth in degrees of freedom
with increasing particle number. The two-body reduced density matrix (2-RDM)
formalism reduces this coordinate dependence to that of four particles
irrespective of the wave function's dimensionality, providing a promising path
to solve the many-body problem. Unfortunately, errors arise in this approach
because the 2-RDM cannot practically be constrained to guarantee that it
corresponds to a valid wave function. Here we approach this so-called
$N$-representability problem by expanding the 2-RDM in a complete basis of
two-electron wave functions and studying the matrix formed by the expansion
coefficients. This quantity, which we call the geminal density matrix (GDM), is
found to evolve in time by a unitary transformation that preserves
$N$-representability. This evolution law enables us to calculate eigenstates of
strongly correlated systems by a fictitious adiabatic evolution in which the
electron-electron interaction is slowly switched on. We show how this technique
is used to diagonalize atomic Hamiltonians, finding that the problem reduces to
the solution of $\sim N(N-1)/2$ two-electron eigenstates of the Helium atom on
a grid of electron-electron interaction scaling factors.
Related papers
- Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Quantum Many-body Theory from a Solution of the $N$-representability
Problem [0.0]
We derive an equation that re-expresses physical constraints on higher-order RDMs to generate direct constraints on the 2-RDM.
We illustrate by computing the ground-state electronic energy and properties of the H$_8$ ring.
arXiv Detail & Related papers (2023-04-17T19:19:31Z) - Two electrons in harmonic confinement coupled to light in a cavity [62.997667081978825]
The energy and wave function of a harmonically confined two-electron system coupled to light is calculated.
Relative motion wave function has a known quasi-analytical solution.
arXiv Detail & Related papers (2021-08-03T18:56:50Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Dual-Cone Variational Calculation of the 2-Electron Reduced Density
Matrix [0.0]
Variational calculation of the two-electron reduced density matrix (2RDM) without the many-electron wave function exploits the pairwise nature of the electronic Coulomb interaction.
Here we generalize the dual-cone variational 2-RDM method to compute not only the ground-state energy but also the 2-RDM.
We apply the method to computing the energies and properties of strongly correlated electrons in an illustrative hydrogen chain and the nitrogen-fixation catalyst FeMoco.
arXiv Detail & Related papers (2021-03-31T15:20:34Z) - Resolving Correlated States of Benzyne on a Quantum Computer with an
Error-Mitigated Quantum Contracted Eigenvalue Solver [0.0]
We show that a contraction of the Schr"odinger equation is solved for the two-electron reduced density matrix (2-RDM)
In contrast to the traditional variational quantum eigensolver, the contracted quantum eigensolver solves an integration (or contraction) of the many-electron Schr"odinger equation onto the two-electron space.
arXiv Detail & Related papers (2021-03-11T18:58:43Z) - Dynamical formulation of low-energy scattering in one dimension [0.0]
A transfer matrix $mathbfM$ of a short-range potential may be expressed in terms of the time-evolution operator for an effective two-level quantum system.
We explore the utility of this formulation in the study of the low-energy behavior of the scattering data.
arXiv Detail & Related papers (2021-02-11T15:55:34Z) - Quantum Simulation of Molecules without Fermionic Encoding of the Wave
Function [62.997667081978825]
fermionic encoding of the wave function can be bypassed, leading to more efficient quantum computations.
An application to computing the ground-state energy and 2-RDM of H$_4$ is presented.
arXiv Detail & Related papers (2021-01-27T18:57:11Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z) - Exact Two-body Expansion of the Many-particle Wave Function [0.0]
We show an exact two-body exponential product expansion for the ground-state wave function.
The two-body expansion offers a reduced parametrization of the many-particle wave function.
We demonstrate the result with the exact solution of the contracted Schr"odinger equation for the molecular chains H$_4$ and H$_5$.
arXiv Detail & Related papers (2020-10-05T17:47:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.