Optimal noise estimation from syndrome statistics of quantum codes
- URL: http://arxiv.org/abs/2010.02243v2
- Date: Wed, 7 Oct 2020 06:44:30 GMT
- Title: Optimal noise estimation from syndrome statistics of quantum codes
- Authors: Thomas Wagner, Hermann Kampermann, Dagmar Bru{\ss} and Martin Kliesch
- Abstract summary: Quantum error correction allows to actively correct errors occurring in a quantum computation when the noise is weak enough.
Traditionally, this information is obtained by benchmarking the device before operation.
We address the question of what can be learned from only the measurements done during decoding.
- Score: 0.7264378254137809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction allows to actively correct errors occurring in a
quantum computation when the noise is weak enough. To make this error
correction competitive information about the specific noise is required.
Traditionally, this information is obtained by benchmarking the device before
operation. We address the question of what can be learned from only the
measurements done during decoding. Such estimation of noise models was proposed
for surface codes, exploiting their special structure, and in the limit of low
error rates also for other codes. However, so far it has been unclear under
what general conditions noise models can be estimated from the syndrome
measurements. In this work, we derive a general condition for identifiability
of the error rates. For general stabilizer codes, we prove identifiability
under the assumption that the rates are small enough. Without this assumption
we prove a result for perfect codes. Finally, we propose a practical estimation
method with linear runtime for concatenated codes. We demonstrate that it
outperforms other recently proposed methods and that the estimation is optimal
in the sense that it reaches the Cram\'{e}r-Rao Bound. Our method paves the way
for practical calibration of error corrected quantum devices during operation.
Related papers
- Orthogonal Causal Calibration [55.28164682911196]
We prove generic upper bounds on the calibration error of any causal parameter estimate $theta$ with respect to any loss $ell$.
We use our bound to analyze the convergence of two sample splitting algorithms for causal calibration.
arXiv Detail & Related papers (2024-06-04T03:35:25Z) - Modeling error correction with Lindblad dynamics and approximate channels [0.0]
We study how different approximations of the noise capture the performance of the five-qubit code.
A Pauli approximation going beyond a single-qubit channel, is sensitive to the details of the noise, state, and decoder.
We calculate the code pseudo-threshold emerging within this model, and demonstrate how knowledge of the qubit parameters and connectivity can be used to design better decoders.
arXiv Detail & Related papers (2024-02-26T16:48:34Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Accurate optimal quantum error correction thresholds from coherent information [1.351813974961217]
We use the coherent information of the mixed state of noisy QEC codes to accurately estimate the associated optimal QEC thresholds.
Our findings establish the coherent information as a reliable competitive practical tool for the calculation of optimal thresholds of state-of-the-art QEC codes.
arXiv Detail & Related papers (2023-12-11T18:59:58Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Learning logical Pauli noise in quantum error correction [0.7264378254137809]
We focus on the characterization of quantum computers in the context of stabilizer quantum error correction.
For arbitrary stabilizer codes, subsystem codes, and data syndrome codes, we prove that the logical error channel induced by Pauli noise can be estimated from syndrome data under minimal conditions.
arXiv Detail & Related papers (2022-09-19T18:00:06Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Pauli channels can be estimated from syndrome measurements in quantum
error correction [0.7264378254137809]
We show that a stabilizer code can be used to estimate Pauli channels with correlations across a number of qubits given by the pure distance.
It also allows for measurement errors within the framework of quantum data-syndrome codes.
It is our hope that this work opens up interesting applications, such as the online adaptation of a decoder to time-varying noise.
arXiv Detail & Related papers (2021-07-29T18:01:10Z) - Efficiently computing logical noise in quantum error correcting codes [0.0]
We show that measurement errors on readout qubits manifest as a renormalization on the effective logical noise.
We derive general methods for reducing the computational complexity of the exact effective logical noise by many orders of magnitude.
arXiv Detail & Related papers (2020-03-23T19:40:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.