Fault-tolerant quantum architectures based on erasure qubits
- URL: http://arxiv.org/abs/2312.14060v1
- Date: Thu, 21 Dec 2023 17:40:18 GMT
- Title: Fault-tolerant quantum architectures based on erasure qubits
- Authors: Shouzhen Gu, Alex Retzker, Aleksander Kubica
- Abstract summary: We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
- Score: 49.227671756557946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The overhead of quantum error correction (QEC) poses a major bottleneck for
realizing fault-tolerant computation. To reduce this overhead, we exploit the
idea of erasure qubits, relying on an efficient conversion of the dominant
noise into erasures at known locations. We start by introducing a formalism for
QEC schemes with erasure qubits and express the corresponding decoding problem
as a matching problem. Then, we propose and optimize QEC schemes based on
erasure qubits and the recently-introduced Floquet codes. Our schemes are
well-suited for superconducting circuits, being compatible with planar layouts.
We numerically estimate the memory thresholds for the circuit noise model that
includes spreading (via entangling operations) and imperfect detection of
erasures. Our results demonstrate that, despite being slightly more complex,
QEC schemes based on erasure qubits can significantly outperform standard
approaches.
Related papers
- Optimizing quantum error correction protocols with erasure qubits [42.00287729190062]
Erasure qubits offer a promising avenue toward reducing the overhead of quantum error correction protocols.
We focus on the performance of the surface code as a quantum memory.
Our results indicate that QEC protocols with erasure qubits can outperform the ones with state-of-the-art transmons.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms [1.4767596539913115]
A major challenge in performing quantum error correction (QEC) is implementing reliable measurements and conditional feed-forward operations.
We propose implementations of small measurement-free QEC schemes, which are fault-tolerant to circuit-level noise.
We highlight how this alternative approach paves the way towards implementing resource-efficient measurement-free QEC on neutral-atom arrays.
arXiv Detail & Related papers (2024-04-17T18:01:57Z) - Accurate optimal quantum error correction thresholds from coherent information [1.351813974961217]
We use the coherent information of the mixed state of noisy QEC codes to accurately estimate the associated optimal QEC thresholds.
Our findings establish the coherent information as a reliable competitive practical tool for the calculation of optimal thresholds of state-of-the-art QEC codes.
arXiv Detail & Related papers (2023-12-11T18:59:58Z) - Measurement-free fault-tolerant quantum error correction in near-term
devices [0.0]
We provide a novel scheme to perform QEC cycles without the need of measuring qubits.
We benchmark logical failure rates of the scheme in comparison to a flag-qubit based EC cycle.
We outline how our scheme could be implemented in ion traps and with neutral atoms in a tweezer array.
arXiv Detail & Related papers (2023-07-25T07:22:23Z) - A framework of partial error correction for intermediate-scale quantum
computers [0.7046417074932257]
We show that brick-layered circuits display on average slower concentration to the "useless" uniform distribution.
We find that this advantage only comes when the number of error-corrected qubits passes a specified threshold.
arXiv Detail & Related papers (2023-06-27T15:00:57Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.