A Query-Efficient Quantum Algorithm for Maximum Matching on General
Graphs
- URL: http://arxiv.org/abs/2010.02324v2
- Date: Tue, 11 May 2021 15:59:41 GMT
- Title: A Query-Efficient Quantum Algorithm for Maximum Matching on General
Graphs
- Authors: Shelby Kimmel and R. Teal Witter
- Abstract summary: We design quantum algorithms for maximum matching.
In particular, for a graph with $n$ nodes and $m$ edges, our algorithm makes $O(n7/4) queries in the matrix model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design quantum algorithms for maximum matching. Working in the query
model, in both adjacency matrix and adjacency list settings, we improve on the
best known algorithms for general graphs, matching previously obtained results
for bipartite graphs. In particular, for a graph with $n$ nodes and $m$ edges,
our algorithm makes $O(n^{7/4})$ queries in the matrix model and
$O(n^{3/4}(m+n)^{1/2})$ queries in the list model. Our approach combines
Gabow's classical maximum matching algorithm [Gabow, Fundamenta Informaticae,
'17] with the guessing tree method of Beigi and Taghavi [Beigi and Taghavi,
Quantum, '20].
Related papers
- Efficient Algorithms for Recognizing Weighted Tree-Adjoining Languages [104.90415092306219]
Four formalisms are equivalent to tree-adjoining grammars (TAG), linear indexed grammars (LIG), pushdown-adjoining automata (PAA) and embedded pushdown automata (EPDA)
We design new algorithms for computing their stringsum derivations (the weight of all automatons of a string) and allsums (the weight of all derivations)
For EPDA, our algorithm is both more space-efficient and time-efficient than the algorithm of Alonso et al. (2001) by factors of $mathcalO(|Gamma|2)$ and $
arXiv Detail & Related papers (2023-10-23T18:26:00Z) - Do you know what q-means? [50.045011844765185]
Clustering is one of the most important tools for analysis of large datasets.
We present an improved version of the "$q$-means" algorithm for clustering.
We also present a "dequantized" algorithm for $varepsilon which runs in $Obig(frack2varepsilon2(sqrtkd + log(Nd))big.
arXiv Detail & Related papers (2023-08-18T17:52:12Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - The Quantum Approximate Optimization Algorithm at High Depth for MaxCut
on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model [0.0]
The Quantum Approximate Optimization Algorithm (QAOA) finds approximate solutions to optimization problems.
We give an iterative formula to evaluate performance for any $D$ at any depth $p$.
We make an optimistic conjecture that the QAOA, as $p$ goes to infinity, will achieve the Parisi value.
arXiv Detail & Related papers (2021-10-27T06:35:59Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits.
Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering.
We show the qudit implementation is superior to the qubit encoding as quantified by the gate count.
arXiv Detail & Related papers (2021-06-22T11:07:38Z) - Time and Query Optimal Quantum Algorithms Based on Decision Trees [2.492300648514128]
We show that a quantum algorithm can be implemented in time $tilde O(sqrtGT)$.
Our algorithm is based on non-binary span programs and their efficient implementation.
arXiv Detail & Related papers (2021-05-18T06:51:11Z) - Classical algorithms for Forrelation [2.624902795082451]
We study the forrelation problem: given a pair of $n$-bit Boolean functions $f$ and $g$, estimate the correlation between $f$ and the Fourier transform of $g$.
This problem is known to provide the largest possible quantum speedup in terms of its query complexity.
We show that the graph-based forrelation problem can be solved on a classical computer in time $O(n)$ for any bipartite graph.
arXiv Detail & Related papers (2021-02-13T17:25:41Z) - Random Graph Matching with Improved Noise Robustness [2.294014185517203]
We propose a new algorithm for graph matching under probabilistic models.
Our algorithm recovers the underlying matching with high probability when $alpha le 1 / (log log n)C$.
This improves the condition $alpha le 1 / (log n)C$ achieved in previous work.
arXiv Detail & Related papers (2021-01-28T02:39:27Z) - Hybrid quantum-classical algorithms for approximate graph coloring [65.62256987706128]
We show how to apply the quantum approximate optimization algorithm (RQAOA) to MAX-$k$-CUT, the problem of finding an approximate $k$-vertex coloring of a graph.
We construct an efficient classical simulation algorithm which simulates level-$1$ QAOA and level-$1$ RQAOA for arbitrary graphs.
arXiv Detail & Related papers (2020-11-26T18:22:21Z) - Quantum algorithms for learning a hidden graph and beyond [0.05076419064097732]
We study the problem of learning an unknown graph provided via an oracle using a quantum algorithm.
We give quantum algorithms that achieve speedups over the best possible classical algorithms in the OR and parity query models.
We additionally give a time-efficient quantum algorithm for this problem, based on the algorithm of Ambainis et al. for a "gapped" version of the group testing problem.
arXiv Detail & Related papers (2020-11-17T13:12:43Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.