Hybrid quantum-classical algorithms for approximate graph coloring
- URL: http://arxiv.org/abs/2011.13420v2
- Date: Mon, 28 Mar 2022 08:30:18 GMT
- Title: Hybrid quantum-classical algorithms for approximate graph coloring
- Authors: Sergey Bravyi, Alexander Kliesch, Robert Koenig, Eugene Tang
- Abstract summary: We show how to apply the quantum approximate optimization algorithm (RQAOA) to MAX-$k$-CUT, the problem of finding an approximate $k$-vertex coloring of a graph.
We construct an efficient classical simulation algorithm which simulates level-$1$ QAOA and level-$1$ RQAOA for arbitrary graphs.
- Score: 65.62256987706128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show how to apply the recursive quantum approximate optimization algorithm
(RQAOA) to MAX-$k$-CUT, the problem of finding an approximate $k$-vertex
coloring of a graph. We compare this proposal to the best known classical and
hybrid classical-quantum algorithms. First, we show that the standard
(non-recursive) QAOA fails to solve this optimization problem for most regular
bipartite graphs at any constant level $p$: the approximation ratio achieved by
QAOA is hardly better than assigning colors to vertices at random. Second, we
construct an efficient classical simulation algorithm which simulates level-$1$
QAOA and level-$1$ RQAOA for arbitrary graphs. In particular, these hybrid
algorithms give rise to efficient classical algorithms, and no benefit arising
from the use of quantum mechanics is to be expected. Nevertheless, they provide
a suitable testbed for assessing the potential benefit of hybrid algorithm: We
use the simulation algorithm to perform large-scale simulation of level-$1$
QAOA and RQAOA with up to $300$ qutrits applied to ensembles of randomly
generated $3$-colorable constant-degree graphs. We find that level-$1$ RQAOA is
surprisingly competitive: for the ensembles considered, its approximation
ratios are often higher than those achieved by the best known generic classical
algorithm based on rounding an SDP relaxation. This suggests the intriguing
possibility that higher-level RQAOA may be a potentially useful algorithm for
NISQ devices.
Related papers
- Improved Recursive QAOA for Solving MAX-CUT on Bipartite Graphs [4.364124102844566]
We analytically prove the performance limitations of level-1 QAOA in solving the MAX-CUT problem on bipartite graphs.
We show through numerical results that solving the same problem using level-1 Recursive QAOA (RQAOA)
We propose a modified RQAOA that reduces the parameter regime optimized in the QAOA.
arXiv Detail & Related papers (2024-08-23T16:35:47Z) - A Multilevel Approach For Solving Large-Scale QUBO Problems With Noisy Hybrid Quantum Approximate Optimization [3.3493770627144004]
We experimentally test how existing quantum processing units (QPUs) perform as subsolvers within a multilevel strategy.
We find approximate solutions to $10$ instances of fully connected $82$-qubit Sherrington-Kirkpatrick graphs.
We observe that quantum optimization results are competitive regarding the quality of solutions compared to classicals.
arXiv Detail & Related papers (2024-08-14T20:06:32Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Hybrid Classical-Quantum Simulation of MaxCut using QAOA-in-QAOA [0.0]
In this work, an implementation of the QAOA2 method for the scalable solution of the MaxCut problem is presented.
The limits of the Goemans-Williamson (GW) algorithm as a purely classical alternative to QAOA are investigated.
Results from large-scale simulations of up to 33 qubits are presented, showing the advantage of QAOA in certain cases and the efficiency of the implementation.
arXiv Detail & Related papers (2024-06-25T09:02:31Z) - Matching Pursuit Based Scheduling for Over-the-Air Federated Learning [67.59503935237676]
This paper develops a class of low-complexity device scheduling algorithms for over-the-air learning via the method of federated learning.
Compared to the state-of-the-art proposed scheme, the proposed scheme poses a drastically lower efficiency system.
The efficiency of the proposed scheme is confirmed via experiments on the CIFAR dataset.
arXiv Detail & Related papers (2022-06-14T08:14:14Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits.
Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering.
We show the qudit implementation is superior to the qubit encoding as quantified by the gate count.
arXiv Detail & Related papers (2021-06-22T11:07:38Z) - Classical algorithms and quantum limitations for maximum cut on
high-girth graphs [6.262125516926276]
We show that every (quantum or classical) one-local algorithm achieves on $D$-regular graphs of $> 5$ a maximum cut of at most $1/2 + C/sqrtD$ for $C=1/sqrt2 approx 0.7071$.
We show that there is a classical $k$-local algorithm that achieves a value of $1/2 + C/sqrtD - O (1/sqrtk)$ for $D$-regular graphs of $> 2k+1$, where
arXiv Detail & Related papers (2021-06-10T16:28:23Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.