論文の概要: Global soil moisture from in-situ measurements using machine learning --
SoMo.ml
- arxiv url: http://arxiv.org/abs/2010.02374v1
- Date: Mon, 5 Oct 2020 22:32:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 22:24:26.635652
- Title: Global soil moisture from in-situ measurements using machine learning --
SoMo.ml
- Title(参考訳): 機械学習を用いたその場測定による地球土壌水分測定 -somo.ml
- Authors: Sungmin O and Rene Orth
- Abstract要約: 機械学習, SoMo.ml を用いたその場測定から得られた土壌水分の地球規模の長期データセットについて述べる。
我々は、世界中の1000以上のステーションから収集されたその場データに基づいて、空間および時間における土壌水分動態を推定するために、Long Short-Term Memory(LSTM)モデルを訓練する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While soil moisture information is essential for a wide range of hydrologic
and climate applications, spatially-continuous soil moisture data is only
available from satellite observations or model simulations. Here we present a
global, long-term dataset of soil moisture generated from in-situ measurements
using machine learning, SoMo.ml. We train a Long Short-Term Memory (LSTM) model
to extrapolate daily soil moisture dynamics in space and in time, based on
in-situ data collected from more than 1,000 stations across the globe. SoMo.ml
provides multi-layer soil moisture data (0-10 cm, 10-30 cm, and 30-50 cm) at
0.25{\deg} spatial and daily temporal resolution over the period 2000-2019. The
performance of the resulting dataset is evaluated through cross validation and
inter-comparison with existing soil moisture datasets. SoMo.ml performs
especially well in terms of temporal dynamics, making it particularly useful
for applications requiring time-varying soil moisture, such as anomaly
detection and memory analyses. SoMo.ml complements the existing suite of
modelled and satellite-based datasets given its independent and novel
derivation, to support large-scale hydrological, meteorological, and ecological
analyses.
- Abstract(参考訳): 土壌水分情報は幅広い水文・気候の応用に不可欠であるが、空間連続的な土壌水分データは衛星観測やモデルシミュレーションからのみ利用できる。
本稿では,機械学習,somo.mlを用いたその場測定から生成する土壌水分の地球的長期データセットを提案する。
我々は、世界中の1000以上のステーションから収集されたその場データに基づいて、空間および時間における土壌水分動態を推定するLong Short-Term Memory(LSTM)モデルを訓練する。
SoMo.mlは、2000-2019年の時空間分解能0.25{\deg} で多層土壌水分データ(0-10 cm, 10-30 cm, 30-50 cm)を提供する。
得られたデータセットの性能は、既存の土壌水分データセットとクロス検証および相互比較によって評価される。
somo.mlは特に時間的ダイナミクスの点でよく機能し、異常検出やメモリ解析のような時間変化の土壌水分を必要とするアプリケーションで特に有用である。
SoMo.mlは、独立した新しい派生法を与えられた既存のモデルと衛星ベースのデータセット群を補完し、大規模な水文学、気象学、生態学的分析をサポートする。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Spatiotemporal Transformer for Imputing Sparse Data: A Deep Learning
Approach [19.665820528292798]
本稿では,スパースデータセットの欠落値問題に対処するため,新しいStemporal Transformerモデル(ST-Transformer)を提案する。
このモデルは、自制的なアプローチでトレーニングされており、観察されたデータポイントから欠落した値を自律的に予測することができる。
その効果は、テキサス州の36km×36kmグリッド上のSMAP 1土壌水分データに適用することで実証される。
論文 参考訳(メタデータ) (2023-12-01T22:39:02Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
時系列データ、特に時系列データと時間時間データは、現実世界のアプリケーションで広く使われている。
大規模言語やその他の基礎モデルの最近の進歩は、時系列データマイニングや時間データマイニングでの使用の増加に拍車を掛けている。
論文 参考訳(メタデータ) (2023-10-16T09:06:00Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
計算負担を軽減するため,近年の大規模分散時間GPを構築した。
我々は,古気候の確率モデルを構築するために,この2倍のスパースGPをうまく利用した。
論文 参考訳(メタデータ) (2022-11-15T14:15:04Z) - A Machine Learning Data Fusion Model for Soil Moisture Retrieval [0.6675805308519986]
深層学習に基づく畳み込み回帰モデルを構築し, 上部5cmの土壌の体積含水率を推定する。
入力予測器には、Sentinel-1(アクティブレーダ)、Sentinel-2(光学画像)、SMAP(パッシブレーダ)がある。
論文 参考訳(メタデータ) (2022-06-20T08:55:42Z) - EarthNet2021: A novel large-scale dataset and challenge for forecasting
localized climate impacts [12.795776149170978]
大規模な地球観測データセットにより、粗い気象情報を高解像度の地球表面予測に変換できる機械学習モデルが作成できるようになった。
メソスケール気象予測に基づく衛星画像の映像予測として高分解能地球表面予測を定義します。
EarthNet 2021は、高分解能地形とメソスケール(1.28 km)の気象変数と一致する、20 mの解像度でターゲット時空間のセンチネル2衛星画像を含む新しいデータセットである。
論文 参考訳(メタデータ) (2020-12-11T11:21:00Z) - Semi-supervised Soil Moisture Prediction through Graph Neural Networks [12.891517184512551]
本研究では,土壌水分予測の問題を時間グラフによる半教師あり学習に転換する。
本研究では,地域間の関連位置の依存性を利用して土壌水分を予測できる動的グラフニューラルネットワークを提案する。
dglrと呼ばれるこのアルゴリズムは、地域内の複数の場所にわたって土壌水分を予測し、その間のグラフ構造を更新できるエンドツーエンド学習を提供する。
論文 参考訳(メタデータ) (2020-12-07T07:56:11Z) - SMArtCast: Predicting soil moisture interpolations into the future using
Earth observation data in a deep learning framework [0.8399688944263843]
本研究では,衛星画像から土壌水分と植生の計測を行った。
システムは、これらの測定の将来の値を予測することを学習する。
これは、モニタリング能力に制限のある地域で作物に好ましくない土壌水分を警告する可能性がある。
論文 参考訳(メタデータ) (2020-03-16T23:06:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。