Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets
and Context Mining
- URL: http://arxiv.org/abs/2010.02406v1
- Date: Tue, 6 Oct 2020 00:26:14 GMT
- Title: Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets
and Context Mining
- Authors: Chongke Wu, Sicong Shao, Cihan Tunc, Salim Hariri
- Abstract summary: We show how to use pre-trained convolutional neural net models to perform feature extraction and context mining.
We derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method.
- Score: 2.0646127669654835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is critically important for intelligent surveillance
systems to detect in a timely manner any malicious activities. Many video
anomaly detection approaches using deep learning methods focus on a single
camera video stream with a fixed scenario. These deep learning methods use
large-scale training data with large complexity. As a solution, in this paper,
we show how to use pre-trained convolutional neural net models to perform
feature extraction and context mining, and then use denoising autoencoder with
relatively low model complexity to provide efficient and accurate surveillance
anomaly detection, which can be useful for the resource-constrained devices
such as edge devices of the Internet of Things (IoT). Our anomaly detection
model makes decisions based on the high-level features derived from the
selected embedded computer vision models such as object classification and
object detection. Additionally, we derive contextual properties from the
high-level features to further improve the performance of our video anomaly
detection method. We use two UCSD datasets to demonstrate that our approach
with relatively low model complexity can achieve comparable performance
compared to the state-of-the-art approaches.
Related papers
- MissionGNN: Hierarchical Multimodal GNN-based Weakly Supervised Video Anomaly Recognition with Mission-Specific Knowledge Graph Generation [5.0923114224599555]
This paper introduces a novel hierarchical graph neural network (GNN) based model MissionGNN.
Our approach circumvents the limitations of previous methods by avoiding heavy gradient computations on large multimodal models.
Our model provides a practical and efficient solution for real-time video analysis without the constraints of previous segmentation-based or multimodal approaches.
arXiv Detail & Related papers (2024-06-27T01:09:07Z) - Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations [13.529124221397822]
We introduce a novel introspection solution for 2D object detection based on Deep Neural Networks (DNNs)
We implement several state-of-the-art (SOTA) introspection mechanisms for error detection in 2D object detection, using one-stage and two-stage object detectors evaluated on KITTI and BDD datasets.
Our performance evaluation shows that the proposed introspection solution outperforms SOTA methods, achieving an absolute reduction in the missed error ratio of 9% to 17% in the BDD dataset.
arXiv Detail & Related papers (2024-03-02T10:56:14Z) - Video Anomaly Detection using GAN [0.0]
This thesis study aims to offer the solution for this use case so that human resources won't be required to keep an eye out for any unusual activity in the surveillance system records.
We have developed a novel generative adversarial network (GAN) based anomaly detection model.
arXiv Detail & Related papers (2023-11-23T16:41:30Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Anomaly Detection in Video via Self-Supervised and Multi-Task Learning [113.81927544121625]
Anomaly detection in video is a challenging computer vision problem.
In this paper, we approach anomalous event detection in video through self-supervised and multi-task learning at the object level.
arXiv Detail & Related papers (2020-11-15T10:21:28Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Self-Supervised Representation Learning for Visual Anomaly Detection [9.642625267699488]
We consider the problem of anomaly detection in images videos, and present a new visual anomaly detection technique for videos.
We propose a simple self-supervision approach for learning temporal coherence across video frames without the use of any optical flow information.
This intuitive approach shows superior performance of visual anomaly detection compared to numerous methods for images and videos on UCF101 and ILSVRC2015 video datasets.
arXiv Detail & Related papers (2020-06-17T04:37:29Z) - Any-Shot Sequential Anomaly Detection in Surveillance Videos [36.24563211765782]
We propose an online anomaly detection method for surveillance videos using transfer learning and any-shot learning.
Our proposed algorithm leverages the feature extraction power of neural network-based models for transfer learning and the any-shot learning capability of statistical detection methods.
arXiv Detail & Related papers (2020-04-05T02:15:45Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.