Splitting Gaussian Process Regression for Streaming Data
- URL: http://arxiv.org/abs/2010.02424v1
- Date: Tue, 6 Oct 2020 01:37:13 GMT
- Title: Splitting Gaussian Process Regression for Streaming Data
- Authors: Nick Terry and Youngjun Choe
- Abstract summary: We propose an algorithm for sequentially partitioning the input space and fitting a localized Gaussian process to each disjoint region.
The algorithm is shown to have superior time and space complexity to existing methods, and its sequential nature permits application to streaming data.
To the best of our knowledge, the model is the first local Gaussian process regression model to achieve linear memory complexity.
- Score: 1.2691047660244335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian processes offer a flexible kernel method for regression. While
Gaussian processes have many useful theoretical properties and have proven
practically useful, they suffer from poor scaling in the number of
observations. In particular, the cubic time complexity of updating standard
Gaussian process models make them generally unsuitable for application to
streaming data. We propose an algorithm for sequentially partitioning the input
space and fitting a localized Gaussian process to each disjoint region. The
algorithm is shown to have superior time and space complexity to existing
methods, and its sequential nature permits application to streaming data. The
algorithm constructs a model for which the time complexity of updating is
tightly bounded above by a pre-specified parameter. To the best of our
knowledge, the model is the first local Gaussian process regression model to
achieve linear memory complexity. Theoretical continuity properties of the
model are proven. We demonstrate the efficacy of the resulting model on
multi-dimensional regression tasks for streaming data.
Related papers
- Deep Horseshoe Gaussian Processes [1.0742675209112622]
We introduce the deep Horseshoe Gaussian process Deep-HGP, a new simple prior based on deep Gaussian processes with a squared-exponential kernel.
We show that the associated tempered posterior distribution recovers the unknown true regression curve optimally in terms of quadratic loss, up to a logarithmic factor.
arXiv Detail & Related papers (2024-03-04T05:30:43Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
Gaussian process regression is widely used to provide well-calibrated uncertainty estimates.
It struggles with high-dimensional data because of the implicit low-dimensional manifold upon which the data actually lies.
In this paper we propose a technique capable of inferring implicit structure directly from data (labeled and unlabeled) in a fully differentiable way.
arXiv Detail & Related papers (2023-10-30T09:52:48Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
We introduce normalizing flows to re parameterize the ODE vector field, resulting in a data-driven prior distribution.
We also apply normalizing flows to the posterior inference of GP ODEs to resolve the issue of strong mean-field assumptions.
We validate the effectiveness of our approach on simulated dynamical systems and real-world human motion data.
arXiv Detail & Related papers (2023-09-17T09:28:47Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
We develop techniques for broadening the applicability of Gaussian processes.
We introduce a wide class of efficient approximations built from this viewpoint.
We develop a collection of Gaussian process models over non-Euclidean spaces.
arXiv Detail & Related papers (2022-02-22T01:42:57Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
Sparse Markovian processes combine the use of inducing variables with efficient Kalman filter-likes recursion.
We derive a general site-based approach to approximate the non-Gaussian likelihood with local Gaussian terms, called sites.
Our approach results in a suite of novel sparse extensions to algorithms from both the machine learning and signal processing, including variational inference, expectation propagation, and the classical nonlinear Kalman smoothers.
The derived methods are suited to literature-temporal data, where the model has separate inducing points in both time and space.
arXiv Detail & Related papers (2021-03-19T09:50:53Z) - Gauss-Legendre Features for Gaussian Process Regression [7.37712470421917]
We present a Gauss-Legendre quadrature based approach for scaling up Gaussian process regression via a low rank approximation of the kernel matrix.
Our method is very much inspired by the well-known random Fourier features approach, which also builds low-rank approximations via numerical integration.
arXiv Detail & Related papers (2021-01-04T18:09:25Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.