Gauss-Legendre Features for Gaussian Process Regression
- URL: http://arxiv.org/abs/2101.01137v2
- Date: Tue, 5 Jan 2021 13:30:34 GMT
- Title: Gauss-Legendre Features for Gaussian Process Regression
- Authors: Paz Fink Shustin, Haim Avron
- Abstract summary: We present a Gauss-Legendre quadrature based approach for scaling up Gaussian process regression via a low rank approximation of the kernel matrix.
Our method is very much inspired by the well-known random Fourier features approach, which also builds low-rank approximations via numerical integration.
- Score: 7.37712470421917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian processes provide a powerful probabilistic kernel learning
framework, which allows learning high quality nonparametric regression models
via methods such as Gaussian process regression. Nevertheless, the learning
phase of Gaussian process regression requires massive computations which are
not realistic for large datasets. In this paper, we present a Gauss-Legendre
quadrature based approach for scaling up Gaussian process regression via a low
rank approximation of the kernel matrix. We utilize the structure of the low
rank approximation to achieve effective hyperparameter learning, training and
prediction. Our method is very much inspired by the well-known random Fourier
features approach, which also builds low-rank approximations via numerical
integration. However, our method is capable of generating high quality
approximation to the kernel using an amount of features which is
poly-logarithmic in the number of training points, while similar guarantees
will require an amount that is at the very least linear in the number of
training points when random Fourier features. Furthermore, the structure of the
low-rank approximation that our method builds is subtly different from the one
generated by random Fourier features, and this enables much more efficient
hyperparameter learning. The utility of our method for learning with
low-dimensional datasets is demonstrated using numerical experiments.
Related papers
- Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
This paper proposes a voice conversion method that works with limited data.
It is based on variational deep kernel learning (SVDKL)
It is possible to estimate non-smooth and more complex functions.
arXiv Detail & Related papers (2023-09-08T16:32:47Z) - Local Random Feature Approximations of the Gaussian Kernel [14.230653042112834]
We focus on the popular Gaussian kernel and on techniques to linearize kernel-based models by means of random feature approximations.
We show that such approaches yield poor results when modelling high-frequency data, and we propose a novel localization scheme that improves kernel approximations and downstream performance significantly.
arXiv Detail & Related papers (2022-04-12T09:52:36Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
We develop techniques for broadening the applicability of Gaussian processes.
We introduce a wide class of efficient approximations built from this viewpoint.
We develop a collection of Gaussian process models over non-Euclidean spaces.
arXiv Detail & Related papers (2022-02-22T01:42:57Z) - Improved Convergence Rates for Sparse Approximation Methods in
Kernel-Based Learning [48.08663378234329]
Kernel-based models such as kernel ridge regression and Gaussian processes are ubiquitous in machine learning applications.
Existing sparse approximation methods can yield a significant reduction in the computational cost.
We provide novel confidence intervals for the Nystr"om method and the sparse variational Gaussian processes approximation method.
arXiv Detail & Related papers (2022-02-08T17:22:09Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Mat\'ern Gaussian Processes on Graphs [67.13902825728718]
We leverage the partial differential equation characterization of Mat'ern Gaussian processes to study their analog for undirected graphs.
We show that the resulting Gaussian processes inherit various attractive properties of their Euclidean and Euclidian analogs.
This enables graph Mat'ern Gaussian processes to be employed in mini-batch and non-conjugate settings.
arXiv Detail & Related papers (2020-10-29T13:08:07Z) - Scaling up Kernel Ridge Regression via Locality Sensitive Hashing [6.704115928005158]
We introduce a weighted version of random binning features and show that the corresponding kernel function generates smooth Gaussian processes.
We show that our weighted random binning features provide a spectral approximation to the corresponding kernel matrix, leading to efficient algorithms for kernel ridge regression.
arXiv Detail & Related papers (2020-03-21T21:41:16Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.