論文の概要: Multi-Fact Correction in Abstractive Text Summarization
- arxiv url: http://arxiv.org/abs/2010.02443v1
- Date: Tue, 6 Oct 2020 02:51:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 06:39:29.735578
- Title: Multi-Fact Correction in Abstractive Text Summarization
- Title(参考訳): 抽象テキスト要約における多要素補正
- Authors: Yue Dong, Shuohang Wang, Zhe Gan, Yu Cheng, Jackie Chi Kit Cheung and
Jingjing Liu
- Abstract要約: Span-Factは、質問応答モデルから学んだ知識を活用して、スパン選択によるシステム生成サマリーの補正を行う2つの事実補正モデルのスイートである。
我々のモデルは、ソースコードのセマンティック一貫性を確保するために、反復的または自動回帰的にエンティティを置き換えるために、シングルまたはマルチマスキング戦略を採用している。
実験の結果,自動測定と人的評価の両面において,要約品質を犠牲にすることなく,システム生成要約の事実整合性を大幅に向上させることができた。
- 参考スコア(独自算出の注目度): 98.27031108197944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained neural abstractive summarization systems have dominated
extractive strategies on news summarization performance, at least in terms of
ROUGE. However, system-generated abstractive summaries often face the pitfall
of factual inconsistency: generating incorrect facts with respect to the source
text. To address this challenge, we propose Span-Fact, a suite of two factual
correction models that leverages knowledge learned from question answering
models to make corrections in system-generated summaries via span selection.
Our models employ single or multi-masking strategies to either iteratively or
auto-regressively replace entities in order to ensure semantic consistency
w.r.t. the source text, while retaining the syntactic structure of summaries
generated by abstractive summarization models. Experiments show that our models
significantly boost the factual consistency of system-generated summaries
without sacrificing summary quality in terms of both automatic metrics and
human evaluation.
- Abstract(参考訳): 事前学習されたニューラル抽象要約システムは、少なくともROUGEの観点からは、ニュース要約性能に関する抽出戦略を支配している。
しかしながら、システム生成の抽象要約は、ソーステキストに関して誤った事実を生成するという、事実的不整合の落とし穴に直面することが多い。
この課題に対処するために,質問応答モデルから学んだ知識を活用して,スパン選択によるシステム生成要約の補正を行う2つの事実補正モデルからなるSpan-Factを提案する。
我々のモデルは、抽象的な要約モデルによって生成された要約の構文構造を維持しながら、ソーステキストのセマンティック一貫性を確保するために、エンティティを反復的または自動回帰的に置き換えるシングルまたはマルチマスキング戦略を採用している。
実験の結果,自動測定と人的評価の両面において,要約品質を犠牲にすることなく,システム生成要約の事実整合性を大幅に向上させることができた。
関連論文リスト
- AMRFact: Enhancing Summarization Factuality Evaluation with AMR-Driven Negative Samples Generation [57.8363998797433]
抽象的意味表現(AMR)を用いた摂動要約を生成するフレームワークであるAMRFactを提案する。
提案手法は,AMRグラフに一貫した要約を解析し,制御された事実不整合を注入して負の例を生成し,一貫性のない事実不整合要約を高い誤差型カバレッジで生成する。
論文 参考訳(メタデータ) (2023-11-16T02:56:29Z) - Factually Consistent Summarization via Reinforcement Learning with
Textual Entailment Feedback [57.816210168909286]
我々は,この問題を抽象的な要約システムで解くために,テキストエンテーメントモデルの最近の進歩を活用している。
我々は、事実整合性を最適化するために、レファレンスフリーのテキストエンターメント報酬を用いた強化学習を用いる。
自動測定と人的評価の両結果から,提案手法は生成した要約の忠実さ,サリエンス,簡潔さを著しく向上させることが示された。
論文 参考訳(メタデータ) (2023-05-31T21:04:04Z) - Generating Multiple-Length Summaries via Reinforcement Learning for
Unsupervised Sentence Summarization [44.835811239393244]
文要約は、テキストの中核的な内容を維持しながら与えられたテキストを短縮する。
人書きの要約のないテキストを要約するために、教師なしのアプローチが研究されている。
本研究では, 基礎構造を含まない強化学習に基づく抽象モデルを提案する。
論文 参考訳(メタデータ) (2022-12-21T08:34:28Z) - Correcting Diverse Factual Errors in Abstractive Summarization via
Post-Editing and Language Model Infilling [56.70682379371534]
提案手法は, 誤要約の修正において, 従来手法よりもはるかに優れていることを示す。
我々のモデルであるFactEditは、CNN/DMで11点、XSumで31点以上のファクトリティスコアを改善する。
論文 参考訳(メタデータ) (2022-10-22T07:16:19Z) - The Factual Inconsistency Problem in Abstractive Text Summarization: A
Survey [25.59111855107199]
Seq2Seqフレームワークによって開発されたニューラルエンコーダデコーダモデルは、より抽象的な要約を生成するという目標を達成するために提案されている。
高いレベルでは、そのようなニューラルネットワークは、使用される単語やフレーズに制約を加えることなく、自由に要約を生成することができる。
しかし、神経モデルの抽象化能力は二重刃の剣である。
論文 参考訳(メタデータ) (2021-04-30T08:46:13Z) - Constrained Abstractive Summarization: Preserving Factual Consistency
with Constrained Generation [93.87095877617968]
本稿では,抽象要約の現実的一貫性を保ちつつ,制約付き抽象要約(CAS)を提案する。
我々は、CASを満たすために、一般的に自己回帰生成モデルに適用される語彙制約付き復号法を採用する。
対話的要約において1つの手動制約のみを使用する場合、最大13.8ROUGE-2ゲインを観測する。
論文 参考訳(メタデータ) (2020-10-24T00:27:44Z) - Generating (Factual?) Narrative Summaries of RCTs: Experiments with
Neural Multi-Document Summarization [22.611879349101596]
系統的なレビューから,関連記事の要約を抽象的に要約するために,現代のニューラルモデルを評価する。
現代の要約システムは一貫して流動的で関連するシナプスを生み出すが、必ずしも現実的とは限らない。
論文 参考訳(メタデータ) (2020-08-25T22:22:50Z) - Enhancing Factual Consistency of Abstractive Summarization [57.67609672082137]
ファクトアウェアな要約モデル FASum を提案し,実情関係を抽出し,要約生成プロセスに統合する。
次に,既存のシステムから生成した要約から事実誤りを自動的に補正する事実補正モデルFCを設計する。
論文 参考訳(メタデータ) (2020-03-19T07:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。