Learning Visual-Semantic Embeddings for Reporting Abnormal Findings on
Chest X-rays
- URL: http://arxiv.org/abs/2010.02467v1
- Date: Tue, 6 Oct 2020 04:18:18 GMT
- Title: Learning Visual-Semantic Embeddings for Reporting Abnormal Findings on
Chest X-rays
- Authors: Jianmo Ni, Chun-Nan Hsu, Amilcare Gentili, Julian McAuley
- Abstract summary: This work focuses on reporting abnormal findings on radiology images.
We propose a method to identify abnormal findings from the reports in addition to grouping them with unsupervised clustering and minimal rules.
We demonstrate that our method is able to retrieve abnormal findings and outperforms existing generation models on both clinical correctness and text generation metrics.
- Score: 6.686095511538683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic medical image report generation has drawn growing attention due to
its potential to alleviate radiologists' workload. Existing work on report
generation often trains encoder-decoder networks to generate complete reports.
However, such models are affected by data bias (e.g.~label imbalance) and face
common issues inherent in text generation models (e.g.~repetition). In this
work, we focus on reporting abnormal findings on radiology images; instead of
training on complete radiology reports, we propose a method to identify
abnormal findings from the reports in addition to grouping them with
unsupervised clustering and minimal rules. We formulate the task as cross-modal
retrieval and propose Conditional Visual-Semantic Embeddings to align images
and fine-grained abnormal findings in a joint embedding space. We demonstrate
that our method is able to retrieve abnormal findings and outperforms existing
generation models on both clinical correctness and text generation metrics.
Related papers
- Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
We introduce a novel method, textbfStructural textbfEntities extraction and patient indications textbfIncorporation (SEI) for chest X-ray report generation.
We employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports.
We propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications.
arXiv Detail & Related papers (2024-05-23T01:29:47Z) - Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - MedCycle: Unpaired Medical Report Generation via Cycle-Consistency [11.190146577567548]
We introduce an innovative approach that eliminates the need for consistent labeling schemas.
This approach is based on cycle-consistent mapping functions that transform image embeddings into report embeddings.
It outperforms state-of-the-art results in unpaired chest X-ray report generation, demonstrating improvements in both language and clinical metrics.
arXiv Detail & Related papers (2024-03-20T09:40:11Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
Medical report generation (MRG) is essential for computer-aided diagnosis and medication guidance.
Due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports reliably describing lesion areas.
We propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for MRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM)
arXiv Detail & Related papers (2023-03-16T07:23:55Z) - Attributed Abnormality Graph Embedding for Clinically Accurate X-Ray
Report Generation [7.118069629513661]
We introduce a novel fined-grained knowledge graph structure called an attributed abnormality graph (ATAG)
The ATAG consists of interconnected abnormality nodes and attribute nodes, allowing it to better capture the abnormality details.
We show that the proposed ATAG-based deep model outperforms the SOTA methods by a large margin and can improve the clinical accuracy of the generated reports.
arXiv Detail & Related papers (2022-07-04T05:32:00Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation [3.3978173451092437]
Radiology report generation aims at generating descriptive text from radiology images automatically.
A typical setting consists of training encoder-decoder models on image-report pairs with a cross entropy loss.
We propose a novel weakly supervised contrastive loss for medical report generation.
arXiv Detail & Related papers (2021-09-25T00:06:23Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
Report generation for medical imaging promises to reduce workload and assist diagnosis in clinical practice.
Recent work has shown that deep learning models can successfully caption natural images.
We propose variational topic inference for automatic report generation.
arXiv Detail & Related papers (2021-07-15T13:34:38Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
We propose an Auxiliary Signal-Guided Knowledge-Decoder (ASGK) to mimic radiologists' working patterns.
ASGK integrates internal visual feature fusion and external medical linguistic information to guide medical knowledge transfer and learning.
arXiv Detail & Related papers (2020-06-06T01:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.