Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation
- URL: http://arxiv.org/abs/2109.12242v1
- Date: Sat, 25 Sep 2021 00:06:23 GMT
- Title: Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation
- Authors: An Yan, Zexue He, Xing Lu, Jiang Du, Eric Chang, Amilcare Gentili,
Julian McAuley, Chun-Nan Hsu
- Abstract summary: Radiology report generation aims at generating descriptive text from radiology images automatically.
A typical setting consists of training encoder-decoder models on image-report pairs with a cross entropy loss.
We propose a novel weakly supervised contrastive loss for medical report generation.
- Score: 3.3978173451092437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radiology report generation aims at generating descriptive text from
radiology images automatically, which may present an opportunity to improve
radiology reporting and interpretation. A typical setting consists of training
encoder-decoder models on image-report pairs with a cross entropy loss, which
struggles to generate informative sentences for clinical diagnoses since normal
findings dominate the datasets. To tackle this challenge and encourage more
clinically-accurate text outputs, we propose a novel weakly supervised
contrastive loss for medical report generation. Experimental results
demonstrate that our method benefits from contrasting target reports with
incorrect but semantically-close ones. It outperforms previous work on both
clinical correctness and text generation metrics for two public benchmarks.
Related papers
- ReXErr: Synthesizing Clinically Meaningful Errors in Diagnostic Radiology Reports [1.9106067578277455]
We introduce ReXErr, a methodology that leverages Large Language Models to generate representative errors within chest X-ray reports.
We developed error categories that capture common mistakes in both human and AI-generated reports.
Our approach uses a novel sampling scheme to inject diverse errors while maintaining clinical plausibility.
arXiv Detail & Related papers (2024-09-17T01:42:39Z) - Contrastive Learning with Counterfactual Explanations for Radiology Report Generation [83.30609465252441]
We propose a textbfCountertextbfFactual textbfExplanations-based framework (CoFE) for radiology report generation.
Counterfactual explanations serve as a potent tool for understanding how decisions made by algorithms can be changed by asking what if'' scenarios.
Experiments on two benchmarks demonstrate that leveraging the counterfactual explanations enables CoFE to generate semantically coherent and factually complete reports.
arXiv Detail & Related papers (2024-07-19T17:24:25Z) - Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
We introduce a novel method, textbfStructural textbfEntities extraction and patient indications textbfIncorporation (SEI) for chest X-ray report generation.
We employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports.
We propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications.
arXiv Detail & Related papers (2024-05-23T01:29:47Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images.
Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists.
We present a novel multi-modal deep neural network framework for generating chest X-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes.
arXiv Detail & Related papers (2023-11-18T14:37:53Z) - Controllable Chest X-Ray Report Generation from Longitudinal
Representations [13.151444796296868]
One strategy to speed up reporting is to integrate automated reporting systems.
Previous approaches to automated radiology reporting generally do not provide the prior study as input.
We introduce two novel aspects: (1) longitudinal learning -- we propose a method to align, leverage the current and prior scan information into a joint longitudinal representation which can be provided to the multimodal report generation model; (2) sentence-anatomy dropout -- a training strategy for controllability in which the report generator model is trained to predict only sentences from the original report which correspond to the subset of anatomical regions given as input.
arXiv Detail & Related papers (2023-10-09T17:22:58Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - FlexR: Few-shot Classification with Language Embeddings for Structured
Reporting of Chest X-rays [37.15474283789249]
We propose a method to predict clinical findings defined by sentences in structured reporting templates.
The approach involves training a contrastive language-image model using chest X-rays and related free-text radiological reports.
Results show that even with limited image-level annotations for training, the method can accomplish the structured reporting tasks of severity assessment of cardiomegaly and localizing pathologies in chest X-rays.
arXiv Detail & Related papers (2022-03-29T16:31:39Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
Report generation for medical imaging promises to reduce workload and assist diagnosis in clinical practice.
Recent work has shown that deep learning models can successfully caption natural images.
We propose variational topic inference for automatic report generation.
arXiv Detail & Related papers (2021-07-15T13:34:38Z) - Unifying Relational Sentence Generation and Retrieval for Medical Image
Report Composition [142.42920413017163]
Current methods often generate the most common sentences due to dataset bias for individual case.
We propose a novel framework that unifies template retrieval and sentence generation to handle both common and rare abnormality.
arXiv Detail & Related papers (2021-01-09T04:33:27Z) - Learning Visual-Semantic Embeddings for Reporting Abnormal Findings on
Chest X-rays [6.686095511538683]
This work focuses on reporting abnormal findings on radiology images.
We propose a method to identify abnormal findings from the reports in addition to grouping them with unsupervised clustering and minimal rules.
We demonstrate that our method is able to retrieve abnormal findings and outperforms existing generation models on both clinical correctness and text generation metrics.
arXiv Detail & Related papers (2020-10-06T04:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.