論文の概要: Semantically Driven Sentence Fusion: Modeling and Evaluation
- arxiv url: http://arxiv.org/abs/2010.02592v1
- Date: Tue, 6 Oct 2020 10:06:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 04:51:10.990324
- Title: Semantically Driven Sentence Fusion: Modeling and Evaluation
- Title(参考訳): 意味駆動型文融合:モデリングと評価
- Authors: Eyal Ben-David, Orgad Keller, Eric Malmi, Idan Szpektor, Roi Reichart
- Abstract要約: 文融合は関連文をコヒーレントテキストに結合する作業である。
このタスクの現在のトレーニングと評価スキームは、単一の参照基盤構造に基づいている。
このことは、入力文間の意味的関係を頑健に把握することを妨げる。
- 参考スコア(独自算出の注目度): 27.599227950466442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentence fusion is the task of joining related sentences into coherent text.
Current training and evaluation schemes for this task are based on single
reference ground-truths and do not account for valid fusion variants. We show
that this hinders models from robustly capturing the semantic relationship
between input sentences. To alleviate this, we present an approach in which
ground-truth solutions are automatically expanded into multiple references via
curated equivalence classes of connective phrases. We apply this method to a
large-scale dataset and use the augmented dataset for both model training and
evaluation. To improve the learning of semantic representation using multiple
references, we enrich the model with auxiliary discourse classification tasks
under a multi-tasking framework. Our experiments highlight the improvements of
our approach over state-of-the-art models.
- Abstract(参考訳): 文融合は関連文をコヒーレントテキストに結合する作業である。
このタスクの現在のトレーニングおよび評価スキームは、単一の参照基底構造に基づいており、有効な融合変種を考慮していない。
これは入力文間の意味的関係を頑健に捉えることを妨げている。
そこで本研究では,連結句の帰属同値類を通じて,接地正解を複数の参照に自動的に拡張する手法を提案する。
この手法を大規模データセットに適用し,モデルトレーニングと評価の両方に拡張データセットを使用する。
複数の参照を用いた意味表現の学習を改善するため,マルチタスク・フレームワークにおいて,補助的な談話分類タスクでモデルを強化した。
実験では,最先端モデルに対するアプローチの改善を強調する。
関連論文リスト
- Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
本稿では,複数の推論連鎖を比較するためにモデルを必要とすることによって,性能を向上する新しい手法を提案する。
DCoTデータセットの命令チューニングにより、より小さく、よりアクセスしやすい言語モデルの性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-07-03T15:01:18Z) - Preserving Modality Structure Improves Multi-Modal Learning [64.10085674834252]
大規模マルチモーダルデータセットによる自己教師付き学習は、人間のアノテーションに頼ることなく、意味的に意味のある埋め込みを学ぶことができる。
これらの手法は、モダリティ固有の埋め込みに存在する意味構造を無視して、ドメイン外のデータをうまく一般化するのに苦労することが多い。
共同埋め込み空間におけるモダリティ特異的な関係を保ち, 一般化性を向上させるためのセマンティック・構造保存整合性アプローチを提案する。
論文 参考訳(メタデータ) (2023-08-24T20:46:48Z) - Conjunct Resolution in the Face of Verbal Omissions [51.220650412095665]
本稿では,テキスト上で直接動作する接続分解タスクを提案し,コーディネーション構造に欠けている要素を復元するために,分割・言い換えパラダイムを利用する。
クラウドソースアノテーションによる自然に発生する動詞の省略例を10万件以上を含む,大規模なデータセットをキュレートする。
我々は、このタスクのために様々な神経ベースラインをトレーニングし、最良の手法が適切なパフォーマンスを得る一方で、改善のための十分なスペースを残していることを示す。
論文 参考訳(メタデータ) (2023-05-26T08:44:02Z) - Learning Data Representations with Joint Diffusion Models [20.25147743706431]
データの合成と分類を可能にする統合機械学習モデルは、多くの場合、それらのタスク間の不均一なパフォーマンスを提供するか、トレーニングが不安定である。
それらの目的間のパラメータ化を共用した安定な連立エンドツーエンドトレーニングを可能にする分類器を用いて,バニラ拡散モデルを拡張した。
結果として得られた共同拡散モデルは、評価された全てのベンチマークにおいて、分類と生成品質の両方の観点から、最近の最先端のハイブリッド手法よりも優れている。
論文 参考訳(メタデータ) (2023-01-31T13:29:19Z) - Class Enhancement Losses with Pseudo Labels for Zero-shot Semantic
Segmentation [40.09476732999614]
マスクの提案モデルは、ゼロショットセマンティックセグメンテーションの性能を大幅に改善した。
トレーニング中にバックグラウンドを埋め込むことは問題であり、結果として得られたモデルが過剰に学習し、正しいラベルではなく、すべての見えないクラスをバックグラウンドクラスとして割り当てる傾向がある。
本稿では,学習中の背景埋め込みの使用を回避し,テキスト埋め込みとマスク提案のセマンティックな関係を類似度スコアのランク付けにより活用する新しいクラス拡張損失を提案する。
論文 参考訳(メタデータ) (2023-01-18T06:55:02Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Relational Sentence Embedding for Flexible Semantic Matching [86.21393054423355]
文埋め込みの可能性を明らかにするための新しいパラダイムとして,文埋め込み(Sentence Embedding, RSE)を提案する。
RSEは文関係のモデル化に有効で柔軟性があり、一連の最先端の埋め込み手法より優れている。
論文 参考訳(メタデータ) (2022-12-17T05:25:17Z) - VLCDoC: Vision-Language Contrastive Pre-Training Model for Cross-Modal
Document Classification [3.7798600249187295]
文書データからのマルチモーダル学習は、前もって意味論的に意味のある機能を学習可能な下流タスクに事前学習可能にすることで、近年大きな成功を収めている。
本稿では,言語と視覚の手がかりを通したクロスモーダル表現の学習により,文書分類問題にアプローチする。
提案手法は,ハイレベルなインタラクションを利用して,モダリティ内外における効果的な注意の流れから関連する意味情報を学習する。
論文 参考訳(メタデータ) (2022-05-24T12:28:12Z) - Meeting Summarization with Pre-training and Clustering Methods [6.47783315109491]
HMNetcitehmnetは、ワードレベルのトランスフォーマーとターンレベルのトランスフォーマーの両方をベースラインとして使用する階層型ネットワークである。
中間クラスタリングステップでQMSumciteqmsumの位置列列化アプローチを拡張する。
ベースラインモデルの性能を,要約に有効な最先端言語モデルであるBARTと比較する。
論文 参考訳(メタデータ) (2021-11-16T03:14:40Z) - Dialogue Summarization with Supporting Utterance Flow Modeling and Fact
Regularization [58.965859508695225]
本稿では、2つの新しいモジュールを用いた対話要約のためのエンドツーエンドニューラルネットワークを提案する。
サポートされた発話フローモデリングは、前者の発話から後者へのフォーカスを円滑にシフトさせることで、コヒーレントな要約を生成するのに役立つ。
事実の正則化は、モデルトレーニング中に生成された要約は、基礎と真実の要約と実際に一致するように促します。
論文 参考訳(メタデータ) (2021-08-03T03:09:25Z) - VCDM: Leveraging Variational Bi-encoding and Deep Contextualized Word
Representations for Improved Definition Modeling [24.775371434410328]
定義モデリングの課題は、単語やフレーズの定義を学習することである。
このタスクの既存のアプローチは差別的であり、直接的ではなく暗黙的に分布的意味論と語彙的意味論を組み合わせたものである。
本稿では、文脈内で使われるフレーズとその定義の基盤となる関係を明示的にモデル化するために、連続潜時変数を導入したタスク生成モデルを提案する。
論文 参考訳(メタデータ) (2020-10-07T02:48:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。