Efficient estimation of multipartite quantum coherence
- URL: http://arxiv.org/abs/2010.02612v3
- Date: Wed, 14 Apr 2021 11:02:53 GMT
- Title: Efficient estimation of multipartite quantum coherence
- Authors: Qi-Ming Ding, Xiao-Xu Fang, Xiao Yuan, Ting Zhang, He Lu
- Abstract summary: We propose a systematic theoretical approach to efficiently estimating lower and upper bounds of coherence in multipartite states.
Under the stabilizer formalism, the lower bound is determined by the spectrum estimation method with a small number of measurements.
We experimentally implement various multi-qubit entangled states, including the Greenberger-Horne-Zeilinger state, the cluster state, and the W state, and show how their coherence are efficiently inferred from measuring few observables.
- Score: 3.948541278345575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantification of coherence lies at the heart of quantum information
processing and fundamental physics. Exact evaluation of coherence measures
generally needs a full reconstruction of the density matrix, which becomes
intractable for large-scale multipartite systems. Here, we propose a systematic
theoretical approach to efficiently estimating lower and upper bounds of
coherence in multipartite states. Under the stabilizer formalism, the lower
bound is determined by the spectrum estimation method with a small number of
measurements and the upper bound is determined by a single measurement. We
verify our theory with a four-qubit optical quantum system.We experimentally
implement various multi-qubit entangled states, including the
Greenberger-Horne-Zeilinger state, the cluster state, and the W state, and show
how their coherence are efficiently inferred from measuring few observables.
Related papers
- Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Overlapped grouping measurement: A unified framework for measuring
quantum states [2.1166716158060104]
We propose a unified framework of quantum measurements, incorporating advanced measurement methods as special cases.
An intuitive understanding of the scheme is to partition the measurements into overlapped groups with each one consisting of compatible measurements.
Our numerical result shows significant improvements over existing schemes.
arXiv Detail & Related papers (2021-05-27T12:38:18Z) - The tightness of multipartite coherence from spectrum estimation [0.0]
Several efficient procedures have been proposed to detect multipartite quantum coherence without quantum state reconstruction.
Here, we first generalize the spectrum-estimation-based method for the geometric measure of coherence.
We observe that the spectrum-estimation-based method outperforms other methods in various coherence measures.
arXiv Detail & Related papers (2021-04-25T08:07:08Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Single-copies estimation of entanglement negativity [1.7179583883220435]
Entanglement plays a central role in quantum information processing.
We propose a scheme to estimate the entanglement negativity of any bi- partition of a composite system.
arXiv Detail & Related papers (2020-04-23T17:57:01Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.