Efficient criteria of quantumness for a large system of qubits
- URL: http://arxiv.org/abs/2108.13554v2
- Date: Sat, 15 Oct 2022 13:28:38 GMT
- Title: Efficient criteria of quantumness for a large system of qubits
- Authors: Shohei Watabe, Michael Zach Serikow, Shiro Kawabata, and Alexandre
Zagoskin
- Abstract summary: We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
- Score: 58.720142291102135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to model and evaluate large-scale quantum systems, e.g. quantum
computer and quantum annealer, it is necessary to quantify the ``quantumness"
of such systems. In this paper, we discuss the dimensionless combinations of
basic parameters of large, partially quantum coherent systems, which could be
used to characterize their degree of quantumness. Based on analytical and
numerical calculations, we suggest one such number for a system of qubits
undergoing adiabatic evolution, i.e., the accessibility index. Applying it to
the case of D-Wave One superconducting quantum annealing device, we find that
its operation as described falls well within the quantum domain.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Pattern capacity of a single quantum perceptron [0.0]
Recent developments in Quantum Machine Learning have seen the introduction of several models to generalize the classical perceptron to the quantum regime.
Here we use a statistical physics approach to compute the pattern capacity of a particular model of quantum perceptron realized by means of a continuous variable quantum system.
arXiv Detail & Related papers (2021-12-19T10:57:08Z) - Experimental estimation of the quantum Fisher information from
randomized measurements [9.795131832414855]
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics.
Here, we explore how the QFI can be estimated via randomized measurements.
We experimentally validate this approach using two platforms: a nitrogen-vacancy center spin in diamond and a 4-qubit state provided by a superconducting quantum computer.
arXiv Detail & Related papers (2021-04-01T15:12:31Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - High-efficiency arbitrary quantum operation on a high-dimensional
quantum system [7.921557303547302]
The ultimate goal of quantum control is to realize arbitrary quantum operations (AQuOs) for all possible open quantum system dynamics.
Here, we experimentally demonstrate a universal approach of AQuO on a photonic qudit with minimum physical resource of a two-level ancilla and a $log_2d$-scale circuit depth.
The AQuO is then applied in quantum trajectory simulation for quantum subspace stabilization and quantum Zeno dynamics, as well as incoherent manipulation and generalized measurements of the qudit.
arXiv Detail & Related papers (2020-10-22T04:01:03Z) - Experimental Entanglement Quantification for Unknown Quantum States in a
Semi-Device-Independent Manner [5.3331673690188]
We show that quantum entanglement can be quantified for any unknown quantum states in a semi-device-independent manner.
We experimentally quantify the entanglement of formation and the entanglement of distillation for qutrit-qutrit quantum systems.
arXiv Detail & Related papers (2020-10-19T12:54:25Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.