論文の概要: Microscopic fine-grained instance classification through deep attention
- arxiv url: http://arxiv.org/abs/2010.02818v1
- Date: Tue, 6 Oct 2020 15:29:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 07:32:53.175024
- Title: Microscopic fine-grained instance classification through deep attention
- Title(参考訳): 深部注視による微細粒状インスタンス分類
- Authors: Mengran Fan, Tapabrata Chakrabort, Eric I-Chao Chang, Yan Xu, Jens
Rittscher
- Abstract要約: 限られたサンプルを用いた微視的画像データのきめ細かい分類は、コンピュータビジョンとバイオメディカルイメージングにおいて未解決の問題である。
本稿では,エンドツーエンドで2つのタスクを同時に実行する,シンプルで効果的なディープネットワークを提案する。
その結果、堅牢だが軽量なエンドツーエンドのトレーニング可能なディープネットワークが実現し、最先端の結果が得られます。
- 参考スコア(独自算出の注目度): 7.50282814989294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-grained classification of microscopic image data with limited samples is
an open problem in computer vision and biomedical imaging. Deep learning based
vision systems mostly deal with high number of low-resolution images, whereas
subtle detail in biomedical images require higher resolution. To bridge this
gap, we propose a simple yet effective deep network that performs two tasks
simultaneously in an end-to-end manner. First, it utilises a gated attention
module that can focus on multiple key instances at high resolution without
extra annotations or region proposals. Second, the global structural features
and local instance features are fused for final image level classification. The
result is a robust but lightweight end-to-end trainable deep network that
yields state-of-the-art results in two separate fine-grained multi-instance
biomedical image classification tasks: a benchmark breast cancer histology
dataset and our new fungi species mycology dataset. In addition, we demonstrate
the interpretability of the proposed model by visualising the concordance of
the learned features with clinically relevant features.
- Abstract(参考訳): 限られたサンプルで微視的な画像データの細かな分類は、コンピュータビジョンとバイオメディカルイメージングにおいてオープンな問題である。
深層学習に基づく視覚システムは高解像度の画像を扱うが、バイオメディカル画像の微妙な詳細は高解像度を必要とする。
このギャップを埋めるために、エンドツーエンドで2つのタスクを同時に実行する、シンプルで効果的なディープネットワークを提案する。
まず、追加のアノテーションやリージョンの提案なしに、高解像度で複数のキーインスタンスに集中できるゲート型アテンションモジュールを使用する。
第二に、最終画像レベルの分類には、グローバルな構造的特徴と局所的なインスタンス的特徴が融合される。
その結果、堅牢で軽量なトレーニング可能な深層ネットワークが実現し、2つの微細なマルチインスタンスのバイオメディカルイメージ分類タスク、すなわちベンチマーク乳がん組織学データセットと新たな真菌種の菌学データセットが実現した。
さらに,臨床に関連のある特徴と学習した特徴の一致を可視化することにより,提案モデルの解釈可能性を示す。
関連論文リスト
- Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - A Novel Vision Transformer with Residual in Self-attention for
Biomedical Image Classification [8.92307560991779]
本稿では、視覚変換器(ViT)のためのマルチヘッド自己注意の新しい枠組みについて述べる。
提案手法は,マルチヘッドアテンションの各ブロックにおける最高のアテンション出力を蓄積するために,残差接続の概念を用いる。
その結果、従来のViTや他の畳み込みに基づく最先端の分類モデルよりも顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-06-02T15:06:14Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
低解像度医用画像から様々な大きさの病変を適応的に分割する,スケールアウェアな超解像ネットワークを提案する。
提案するネットワークは,他の最先端手法と比較して一貫した改善を実現した。
論文 参考訳(メタデータ) (2023-05-30T14:25:55Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
医用画像から多様なセグメンテーションを仕上げるマルチスケールサブトラクションネットワーク(M$2$SNet)を提案する。
本手法は,4つの異なる医用画像セグメンテーションタスクの11つのデータセットに対して,異なる評価基準の下で,ほとんどの最先端手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2023-03-20T06:26:49Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - MTNeuro: A Benchmark for Evaluating Representations of Brain Structure
Across Multiple Levels of Abstraction [0.0]
脳のマッピングでは、画像を自動的に解析して、小さな特徴とグローバルな特性の両方の表現を構築することは、決定的かつオープンな課題である。
我々のベンチマーク(MTNeuro)は、マウス脳の広い領域にまたがる体積分解能X線マイクロトモグラフィー画像に基づいている。
我々は様々な予測課題を生み出し、脳領域予測と画素レベルの微構造セマンティックセマンティックセグメンテーションのための教師付きおよび自己教師型モデルを評価した。
論文 参考訳(メタデータ) (2023-01-01T04:54:03Z) - Joint localization and classification of breast tumors on ultrasound
images using a novel auxiliary attention-based framework [7.6620616780444974]
本稿では,注意機構と半教師付き半教師付き学習戦略に基づく,新しい共同局所化と分類モデルを提案する。
提案されたモジュール化フレームワークは、様々なアプリケーションに対して柔軟なネットワーク置換を可能にする。
論文 参考訳(メタデータ) (2022-10-11T20:14:13Z) - Scope2Screen: Focus+Context Techniques for Pathology Tumor Assessment in
Multivariate Image Data [0.0]
Scope2Screenは、全スライディング、ハイプレックス、組織像のフォーカス+コンテキスト探索とアノテーションのためのスケーラブルなソフトウェアシステムである。
我々のアプローチは、数百万のセルを含む1チャンネルあたり109ピクセル以上の100GBの画像を分析するためにスケールする。
単細胞および組織レベルで機能する対話型レンズ技術を提案する。
論文 参考訳(メタデータ) (2021-10-10T18:34:13Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - w-Net: Dual Supervised Medical Image Segmentation Model with
Multi-Dimensional Attention and Cascade Multi-Scale Convolution [47.56835064059436]
医療画像中の小物体の正確なセグメンテーションを予測するために, カスケード型マルチスケール畳み込みを用いた多次元アテンションセグメンテーションモデルを提案する。
提案手法は, KiTS19, Decathlon-10 の Pancreas CT, MICCAI 2018 LiTS Challenge の3つのデータセットを用いて評価した。
論文 参考訳(メタデータ) (2020-11-15T13:54:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。