論文の概要: Learning Monocular 3D Vehicle Detection without 3D Bounding Box Labels
- arxiv url: http://arxiv.org/abs/2010.03506v1
- Date: Wed, 7 Oct 2020 16:24:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 23:48:32.819865
- Title: Learning Monocular 3D Vehicle Detection without 3D Bounding Box Labels
- Title(参考訳): 3次元バウンディングボックスラベルのない単眼3次元車両検出
- Authors: L. Koestler and N. Yang and R. Wang and D. Cremers
- Abstract要約: 3Dオブジェクト検出器のトレーニングには、3Dバウンディングボックスラベルを持つデータセットが必要である。
本稿では,3次元境界ボックスラベルを使わずにモノラルな3次元物体検出を学習するためのネットワークアーキテクチャとトレーニング手順を提案する。
提案アルゴリズムを実世界のKITTIデータセット上で評価し,トレーニングに3Dバウンディングボックスラベルを必要とする最先端の手法と比較して有望な性能を実現する。
- 参考スコア(独自算出の注目度): 0.09558392439655011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The training of deep-learning-based 3D object detectors requires large
datasets with 3D bounding box labels for supervision that have to be generated
by hand-labeling. We propose a network architecture and training procedure for
learning monocular 3D object detection without 3D bounding box labels. By
representing the objects as triangular meshes and employing differentiable
shape rendering, we define loss functions based on depth maps, segmentation
masks, and ego- and object-motion, which are generated by pre-trained,
off-the-shelf networks. We evaluate the proposed algorithm on the real-world
KITTI dataset and achieve promising performance in comparison to
state-of-the-art methods requiring 3D bounding box labels for training and
superior performance to conventional baseline methods.
- Abstract(参考訳): ディープラーニングベースの3dオブジェクト検出器のトレーニングには、3dバウンディングボックスラベルを持つ大規模なデータセットが必要である。
3dバウンディングボックスラベルを使わずにモノクロ3dオブジェクト検出を学習するためのネットワークアーキテクチャと学習手順を提案する。
物体を三角形メッシュとして表現し、異なる形状のレンダリングを用いて、事前学習されたオフザシェルフネットワークによって生成される深度マップ、セグメンテーションマスク、エゴとオブジェクトの移動に基づいて損失関数を定義する。
提案アルゴリズムを実世界のKITTIデータセット上で評価し,従来のベースライン手法よりも優れた3次元境界ボックスラベルを必要とする最先端の手法と比較して有望な性能を実現する。
関連論文リスト
- Learning 3D Representations from Procedural 3D Programs [6.915871213703219]
自己教師付き学習は、ラベルのない3Dポイントクラウドから転送可能な3D表現を取得するための有望なアプローチとして登場した。
簡単なプリミティブと拡張を使って3次元形状を自動的に生成する手続き型3Dプログラムから3次元表現を学習する。
論文 参考訳(メタデータ) (2024-11-25T18:59:57Z) - Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3Dセグメンテーションはコンピュータビジョンの中核的な問題である。
完全に教師されたトレーニングを採用するために、3Dポイントクラウドを密にラベル付けすることは、労働集約的で高価です。
半教師付きトレーニングは、ラベル付きデータの小さなセットのみを付与し、より大きなラベル付きデータセットを伴って、より実用的な代替手段を提供する。
論文 参考訳(メタデータ) (2024-09-12T14:54:31Z) - VSRD: Instance-Aware Volumetric Silhouette Rendering for Weakly Supervised 3D Object Detection [11.061100776969383]
モノクロ3Dオブジェクト検出は3Dシーン理解において重要な課題となる。
既存の手法は、豊富な3Dラベルを用いた教師あり学習に大きく依存している。
本稿では,VSRDという3次元オブジェクト検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-29T20:43:55Z) - Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance [72.6809373191638]
本稿では,3次元ラベルを必要とせずに2次元ドメインと3次元ドメイン間の制約を活用できるフレームワークを提案する。
具体的には、LiDARと画像特徴をオブジェクト認識領域に基づいて整列する特徴レベルの制約を設計する。
第二に、出力レベルの制約は、2Dと投影された3Dボックスの推定の重なりを強制するために開発される。
第3に、トレーニングレベルの制約は、視覚データと整合した正確で一貫した3D擬似ラベルを生成することによって利用される。
論文 参考訳(メタデータ) (2023-12-12T18:57:25Z) - SL3D: Self-supervised-Self-labeled 3D Recognition [89.19932178712065]
自己教師付き自己ラベル型3D認識(SL3D)フレームワークを提案する。
SL3Dはクラスタリングと学習機能表現という2つの結合した目的を同時に解決する。
分類、オブジェクト検出、セマンティックセグメンテーションなど、さまざまな3D認識タスクに応用することができる。
論文 参考訳(メタデータ) (2022-10-30T11:08:25Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
3Dアノテーションを使わずに点雲中の車両を検出するためのフラストラム対応幾何推論(FGR)を提案する。
本手法は粗い3次元セグメンテーションと3次元バウンディングボックス推定の2段階からなる。
2Dバウンディングボックスとスパースポイントクラウドだけで、3D空間内のオブジェクトを正確に検出できます。
論文 参考訳(メタデータ) (2021-05-17T07:29:55Z) - 3D Spatial Recognition without Spatially Labeled 3D [127.6254240158249]
Weakly-supervised framework for Point cloud Recognitionを紹介する。
We show that WyPR can detected and segment objects in point cloud data without access any space labels at training time。
論文 参考訳(メタデータ) (2021-05-13T17:58:07Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z) - Weakly Supervised 3D Object Detection from Point Clouds [27.70180601788613]
3Dオブジェクト検出は、特定のクラスに属するオブジェクトの3D境界ボックスを検出し、ローカライズすることを目的としている。
既存の3Dオブジェクト検出器は、トレーニング中にアノテーション付き3Dバウンディングボックスに依存している。
基礎となる真理3D境界ボックスを使わずに点雲からの3Dオブジェクト検出を弱教師付きで行うためのフレームワークであるVS3Dを提案する。
論文 参考訳(メタデータ) (2020-07-28T03:30:11Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
3Dの向きとオブジェクトの変換を推定することは、インフラストラクチャレスの自律走行と運転に不可欠である。
SMOKEと呼ばれる新しい3次元オブジェクト検出手法を提案する。
構造的単純さにもかかわらず、提案するSMOKEネットワークは、KITTIデータセット上の既存のモノクル3D検出方法よりも優れている。
論文 参考訳(メタデータ) (2020-02-24T08:15:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。