論文の概要: On the Evaluation of Generative Adversarial Networks By Discriminative
Models
- arxiv url: http://arxiv.org/abs/2010.03549v1
- Date: Wed, 7 Oct 2020 17:50:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 22:19:02.955903
- Title: On the Evaluation of Generative Adversarial Networks By Discriminative
Models
- Title(参考訳): 判別モデルによる生成型adversarial networkの評価について
- Authors: Amirsina Torfi, Mohammadreza Beyki, Edward A. Fox
- Abstract要約: GAN(Generative Adversarial Networks)は、複雑な多次元データを正確にモデル化し、現実的なサンプルを生成する。
この問題に対処する研究努力の大部分は、質的な視覚的評価によって検証された。
本研究では,シームズニューラルネットワークを用いてドメインに依存しない評価指標を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) can accurately model complex
multi-dimensional data and generate realistic samples. However, due to their
implicit estimation of data distributions, their evaluation is a challenging
task. The majority of research efforts associated with tackling this issue were
validated by qualitative visual evaluation. Such approaches do not generalize
well beyond the image domain. Since many of those evaluation metrics are
proposed and bound to the vision domain, they are difficult to apply to other
domains. Quantitative measures are necessary to better guide the training and
comparison of different GANs models. In this work, we leverage Siamese neural
networks to propose a domain-agnostic evaluation metric: (1) with a qualitative
evaluation that is consistent with human evaluation, (2) that is robust
relative to common GAN issues such as mode dropping and invention, and (3) does
not require any pretrained classifier. The empirical results in this paper
demonstrate the superiority of this method compared to the popular Inception
Score and are competitive with the FID score.
- Abstract(参考訳): GAN(Generative Adversarial Networks)は、複雑な多次元データを正確にモデル化し、現実的なサンプルを生成する。
しかし,データ分布を暗黙的に推定するため,その評価は難しい課題である。
この問題に取り組む研究活動の大部分は、定性的な視覚的評価によって検証された。
このようなアプローチは、画像領域を超えてあまり一般化しない。
これらの評価指標の多くは視覚領域に限定して提案されているため、他の領域に適用することは困難である。
異なるGANモデルのトレーニングと比較をガイドするためには、定量的な測定が必要である。
本研究では,シアムニューラルネットを用いて,(1)人間の評価と整合した質的評価,(2)モード降下や発明といった一般的なgan問題に対する頑健,(3)事前学習された分類器を必要としないこと,という,ドメインに依存しない評価基準を提案する。
本稿では,本手法が人気のあるインセプションスコアに比べて優れていることを示し,fidスコアと競合することを示す。
関連論文リスト
- Evaluating Deep Neural Networks in Deployment (A Comparative and Replicability Study) [11.242083685224554]
ディープニューラルネットワーク(DNN)は、安全クリティカルなアプリケーションでますます利用されている。
デプロイにおけるDNNの信頼性を評価するために提案されている最近のアプローチについて検討する。
複製パッケージ上でこれらのアプローチの結果を実行して再現することは困難であり、それ自身以外のアーティファクト上でも実行することがさらに困難であることに気付きました。
論文 参考訳(メタデータ) (2024-07-11T17:58:12Z) - Towards Evaluating Transfer-based Attacks Systematically, Practically,
and Fairly [79.07074710460012]
ディープニューラルネットワーク(DNN)の敵対的脆弱性に大きな注目を集めている。
ブラックボックスDNNモデルを騙すための転送ベース手法が増えている。
30以上のメソッドを実装した転送ベースアタックベンチマーク(TA-Bench)を確立する。
論文 参考訳(メタデータ) (2023-11-02T15:35:58Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - GMValuator: Similarity-based Data Valuation for Generative Models [41.76259565672285]
生成モデル評価器(GMValuator, Generative Model Valuator, GMValuator, GMValuator)を導入した。
GMValuatorは、その有効性を示すために、様々なデータセットや生成アーキテクチャで広く評価されている。
論文 参考訳(メタデータ) (2023-04-21T02:02:02Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Generalizability of Adversarial Robustness Under Distribution Shifts [57.767152566761304]
本研究は, 実証的, 証明された敵対的堅牢性間の相互作用と, ドメインの一般化を両立させるための第一歩を踏み出した。
複数のドメインでロバストモデルをトレーニングし、その正確性とロバスト性を評価する。
本研究は, 現実の医療応用をカバーするために拡張され, 敵の増大は, クリーンデータ精度に最小限の影響を伴って, 強靭性の一般化を著しく促進する。
論文 参考訳(メタデータ) (2022-09-29T18:25:48Z) - Towards GAN Benchmarks Which Require Generalization [48.075521136623564]
関数を推定するにはモデルからの大きなサンプルが必要であると我々は主張する。
我々は、分布を区別するために訓練されたニューラルネットワークの用語で定義されるニューラルネットワーク分散(NND)に目を向ける。
結果として得られたベンチマークは、トレーニングセットの記憶によって"ウォン"することはできないが、それでも知覚的に相関があり、サンプルからのみ計算可能である。
論文 参考訳(メタデータ) (2020-01-10T20:18:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。