Multi-hop Inference for Question-driven Summarization
- URL: http://arxiv.org/abs/2010.03738v1
- Date: Thu, 8 Oct 2020 02:36:39 GMT
- Title: Multi-hop Inference for Question-driven Summarization
- Authors: Yang Deng, Wenxuan Zhang, Wai Lam
- Abstract summary: We propose a novel question-driven abstractive summarization method, Multi-hop Selective Generator (MSG)
MSG incorporates multi-hop reasoning into question-driven summarization and, meanwhile, provide justifications for the generated summaries.
Experimental results show that the proposed method consistently outperforms state-of-the-art methods on two non-factoid QA datasets.
- Score: 39.08269647808958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Question-driven summarization has been recently studied as an effective
approach to summarizing the source document to produce concise but informative
answers for non-factoid questions. In this work, we propose a novel
question-driven abstractive summarization method, Multi-hop Selective Generator
(MSG), to incorporate multi-hop reasoning into question-driven summarization
and, meanwhile, provide justifications for the generated summaries.
Specifically, we jointly model the relevance to the question and the
interrelation among different sentences via a human-like multi-hop inference
module, which captures important sentences for justifying the summarized
answer. A gated selective pointer generator network with a multi-view coverage
mechanism is designed to integrate diverse information from different
perspectives. Experimental results show that the proposed method consistently
outperforms state-of-the-art methods on two non-factoid QA datasets, namely
WikiHow and PubMedQA.
Related papers
- Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach [6.549143816134531]
We propose a novel iterative RAG method called ReSP, equipped with a dual-function summarizer.
Experimental results on the multi-hop question-answering HotpotQA and 2WikiMultihopQA demonstrate that our method significantly outperforms the state-of-the-art.
arXiv Detail & Related papers (2024-07-18T02:19:00Z) - MQAG: Multiple-choice Question Answering and Generation for Assessing
Information Consistency in Summarization [55.60306377044225]
State-of-the-art summarization systems can generate highly fluent summaries.
These summaries, however, may contain factual inconsistencies and/or information not present in the source.
We introduce an alternative scheme based on standard information-theoretic measures in which the information present in the source and summary is directly compared.
arXiv Detail & Related papers (2023-01-28T23:08:25Z) - Semantic Sentence Composition Reasoning for Multi-Hop Question Answering [1.773120658816994]
We present a semantic sentence composition reasoning approach for a multi-hop question answering task.
With the combination of factual sentences and multi-stage semantic retrieval, our approach can provide more comprehensive contextual information for model training and reasoning.
Experimental results demonstrate our model is able to incorporate existing pre-trained language models and outperform the existing SOTA method on the QASC task with an improvement of about 9%.
arXiv Detail & Related papers (2022-03-01T00:35:51Z) - Generating Self-Contained and Summary-Centric Question Answer Pairs via
Differentiable Reward Imitation Learning [7.2745835227138045]
We propose a model for generating question-answer pairs (QA pairs) with self-contained, summary-centric questions and length-constrained, article-summarizing answers.
This dataset is used to learn a QA pair generation model producing summaries as answers that balance brevity with sufficiency jointly with their corresponding questions.
arXiv Detail & Related papers (2021-09-10T06:34:55Z) - Local Explanation of Dialogue Response Generation [77.68077106724522]
Local explanation of response generation (LERG) is proposed to gain insights into the reasoning process of a generation model.
LERG views the sequence prediction as uncertainty estimation of a human response and then creates explanations by perturbing the input and calculating the certainty change over the human response.
Our results show that our method consistently improves other widely used methods on proposed automatic- and human- evaluation metrics for this new task by 4.4-12.8%.
arXiv Detail & Related papers (2021-06-11T17:58:36Z) - Multi-Perspective Abstractive Answer Summarization [76.10437565615138]
Community Question Answering forums contain a rich resource of answers to a wide range of questions.
The goal of multi-perspective answer summarization is to produce a summary that includes all perspectives of the answer.
This work introduces a novel dataset creation method to automatically create multi-perspective, bullet-point abstractive summaries.
arXiv Detail & Related papers (2021-04-17T13:15:29Z) - Discrete Reasoning Templates for Natural Language Understanding [79.07883990966077]
We present an approach that reasons about complex questions by decomposing them to simpler subquestions.
We derive the final answer according to instructions in a predefined reasoning template.
We show that our approach is competitive with the state-of-the-art while being interpretable and requires little supervision.
arXiv Detail & Related papers (2021-04-05T18:56:56Z) - Knowledgeable Dialogue Reading Comprehension on Key Turns [84.1784903043884]
Multi-choice machine reading comprehension (MRC) requires models to choose the correct answer from candidate options given a passage and a question.
Our research focuses dialogue-based MRC, where the passages are multi-turn dialogues.
It suffers from two challenges, the answer selection decision is made without support of latently helpful commonsense, and the multi-turn context may hide considerable irrelevant information.
arXiv Detail & Related papers (2020-04-29T07:04:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.