Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach
- URL: http://arxiv.org/abs/2407.13101v1
- Date: Thu, 18 Jul 2024 02:19:00 GMT
- Title: Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach
- Authors: Zhouyu Jiang, Mengshu Sun, Lei Liang, Zhiqiang Zhang,
- Abstract summary: We propose a novel iterative RAG method called ReSP, equipped with a dual-function summarizer.
Experimental results on the multi-hop question-answering HotpotQA and 2WikiMultihopQA demonstrate that our method significantly outperforms the state-of-the-art.
- Score: 6.549143816134531
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-hop question answering is a challenging task with distinct industrial relevance, and Retrieval-Augmented Generation (RAG) methods based on large language models (LLMs) have become a popular approach to tackle this task. Owing to the potential inability to retrieve all necessary information in a single iteration, a series of iterative RAG methods has been recently developed, showing significant performance improvements. However, existing methods still face two critical challenges: context overload resulting from multiple rounds of retrieval, and over-planning and repetitive planning due to the lack of a recorded retrieval trajectory. In this paper, we propose a novel iterative RAG method called ReSP, equipped with a dual-function summarizer. This summarizer compresses information from retrieved documents, targeting both the overarching question and the current sub-question concurrently. Experimental results on the multi-hop question-answering datasets HotpotQA and 2WikiMultihopQA demonstrate that our method significantly outperforms the state-of-the-art, and exhibits excellent robustness concerning context length.
Related papers
- Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs)
We propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch.
arXiv Detail & Related papers (2024-11-05T09:27:21Z) - EfficientRAG: Efficient Retriever for Multi-Hop Question Answering [52.64500643247252]
We introduce EfficientRAG, an efficient retriever for multi-hop question answering.
Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.
arXiv Detail & Related papers (2024-08-08T06:57:49Z) - Generate-then-Ground in Retrieval-Augmented Generation for Multi-hop Question Answering [45.82437926569949]
Multi-Hop Question Answering tasks present a significant challenge for large language models.
We introduce a novel generate-then-ground (GenGround) framework to solve a multi-hop question.
arXiv Detail & Related papers (2024-06-21T06:26:38Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses.
This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios.
Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process.
arXiv Detail & Related papers (2024-03-31T08:58:54Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
Multi-modal multi-hop question answering involves answering a question by reasoning over multiple input sources from different modalities.
Existing methods often retrieve evidences separately and then use a language model to generate an answer based on the retrieved evidences.
We propose a Structured Knowledge and Unified Retrieval-Generation (RG) approach to address these issues.
arXiv Detail & Related papers (2022-12-16T18:12:04Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Joint Passage Ranking for Diverse Multi-Answer Retrieval [56.43443577137929]
We study multi-answer retrieval, an under-explored problem that requires retrieving passages to cover multiple distinct answers for a question.
This task requires joint modeling of retrieved passages, as models should not repeatedly retrieve passages containing the same answer at the cost of missing a different valid answer.
In this paper, we introduce JPR, a joint passage retrieval model focusing on reranking. To model the joint probability of the retrieved passages, JPR makes use of an autoregressive reranker that selects a sequence of passages, equipped with novel training and decoding algorithms.
arXiv Detail & Related papers (2021-04-17T04:48:36Z) - Memory Augmented Sequential Paragraph Retrieval for Multi-hop Question
Answering [32.69969157825044]
We propose a new architecture that models paragraphs as sequential data and considers multi-hop information retrieval as a kind of sequence labeling task.
We evaluate our method on both full wiki and distractor subtask of HotpotQA, a public textual multi-hop QA dataset.
arXiv Detail & Related papers (2021-02-07T08:15:51Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
We propose a unified QA framework to answer any-hop open-domain questions.
Our method consistently achieves performance comparable to or better than the state-of-the-art on both single-hop and multi-hop open-domain QA datasets.
arXiv Detail & Related papers (2020-09-16T04:31:38Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
We propose QuReTeC (Query Resolution by Term Classification), a neural query resolution model based on bidirectional transformers.
We show that QuReTeC outperforms state-of-the-art models, and furthermore, that our distant supervision method can be used to substantially reduce the amount of human-curated data required to train QuReTeC.
arXiv Detail & Related papers (2020-05-24T11:37:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.