Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics
- URL: http://arxiv.org/abs/2010.03825v1
- Date: Thu, 8 Oct 2020 07:59:29 GMT
- Title: Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics
- Authors: Alejandro R. Ramos Ramos, Oliver K\"uhn
- Abstract summary: We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal control theory is usually formulated as an indirect method requiring
the solution of a two-point boundary value problem. Practically, the solution
is obtained by iterative forward and backward propagation of quantum
wavepackets. Here, we propose direct optimal control as a robust and flexible
alternative. It is based on a discretization of the dynamical equations
resulting in a nonlinear optimization problem. The method is illustrated for
the case of laser-driven wavepacket dynamics in a bistable potential. The
wavepacket is parameterized in terms of a single Gaussian function and field
optimization is performed for a wide range of particle masses and lengths of
the control interval. Using the optimized field in a full quantum propagation
still yields reasonable control yields for most of the considered cases.
Analysis of the deviations leads to conditions which have to be fulfilled to
make the semiclassical single Gaussian approximation meaningful for field
optimization.
Related papers
- Optimizing Unitary Coupled Cluster Wave Functions on Quantum Hardware: Error Bound and Resource-Efficient Optimizer [0.0]
We study the projective quantum eigensolver (PQE) approach to optimizing unitary coupled cluster wave functions on quantum hardware.
The algorithm uses projections of the Schr"odinger equation to efficiently bring the trial state closer to an eigenstate of the Hamiltonian.
We present numerical evidence of superiority over both the optimization introduced in arXiv:2102.00345 and VQE optimized using the Broyden Fletcher Goldfarb Shanno (BFGS) method.
arXiv Detail & Related papers (2024-10-19T15:03:59Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - A Projection Operator-based Newton Method for the Trajectory
Optimization of Closed Quantum Systems [0.0]
This paper develops a new general purpose solver for quantum optimal control based on the PRojection Operator Newton method for Trajectory Optimization, or PRONTO.
Specifically, the proposed approach uses a projection operator to incorporate the Schr"odinger equation directly into the cost function, which is then minimized using a quasi-Newton method.
The resulting method guarantees monotonic convergence at every iteration and quadratic convergence in proximity of the solution.
arXiv Detail & Related papers (2021-11-16T21:49:23Z) - Progress towards analytically optimal angles in quantum approximate
optimisation [0.0]
The Quantum Approximate optimisation algorithm is a $p$ layer, time-variable split operator method executed on a quantum processor.
We prove that optimal parameters for $p=1$ layer reduce to one free variable and in the thermodynamic limit, we recover optimal angles.
We moreover demonstrate that conditions for vanishing gradients of the overlap function share a similar form which leads to a linear relation between circuit parameters, independent on the number of qubits.
arXiv Detail & Related papers (2021-09-23T18:00:13Z) - Manipulating the Dynamics of a Fermi Resonance with Light. A Direct
Optimal Control Theory Approach [0.0]
Direct optimal control theory for quantum dynamical problems presents itself as an interesting alternative to the traditional indirect optimal control.
We extend the application of the method to the case of exact wavepacket propagation using the example of a generic Fermi-resonance model.
arXiv Detail & Related papers (2021-08-27T14:30:03Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Quantum optimal control using phase-modulated driving fields [11.75064344240877]
We devise a novel variant of a gradient-free optimal-control method by introducing the idea of phase-modulated driving fields.
We numerically evaluate its performance and demonstrate the advantages over standard Fourier-basis methods in controlling an ensemble of two-level systems.
arXiv Detail & Related papers (2020-09-22T02:07:47Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.