Application of the Pontryagin Maximum Principle to the robust time-optimal control of two-level quantum systems
- URL: http://arxiv.org/abs/2503.11830v1
- Date: Fri, 14 Mar 2025 19:47:08 GMT
- Title: Application of the Pontryagin Maximum Principle to the robust time-optimal control of two-level quantum systems
- Authors: O. Fresse-Colson, S. Guérin, Xi Chen, D. Sugny,
- Abstract summary: We study the time-optimal robust control of a two-level quantum system subjected to field inhomogeneities.<n>We apply the Pontryagin Maximum Principle and we introduce a reduced space onto which the optimal dynamics is projected down.
- Score: 3.5621685463862356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the time-optimal robust control of a two-level quantum system subjected to field inhomogeneities. We apply the Pontryagin Maximum Principle and we introduce a reduced space onto which the optimal dynamics is projected down. This reduction leads to a complete analytical derivation of the optimal solution in terms of elliptic functions and elliptic integrals. Necessary optimality conditions are then obtained for the original system. These conditions are verified numerically and lead to the optimal control protocol. Various examples, ranging from state-to-state transfer to the generation of a Not gate, illustrate this study. The connection with other geometric optimization approaches that have been used to solve this problem is also discussed.
Related papers
- Optimal State Manipulation for a Two-Qubit System Driven by Coherent and
Incoherent Controls [77.34726150561087]
State preparation is important for optimal control of two-qubit quantum systems.
We exploit two physically different coherent control and optimize the Hilbert-Schmidt target density matrices.
arXiv Detail & Related papers (2023-04-03T10:22:35Z) - Quantum State Transfer Optimization: Balancing Fidelity and Energy
Consumption using Pontryagin Maximum Principle [1.0819408603463425]
We aim to navigate a quantum system from an initial state to a desired state while adhering to the principles of the Liouville-von Neumann equation.
We derive optimality conditions in the form of the Pontryagin Principle (PMP) for the matrix-valued dynamics associated with this problem.
We present a time-discretized computational scheme designed to solve the optimal control problem.
arXiv Detail & Related papers (2023-01-30T12:53:48Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Application of Pontryagin's Maximum Principle to Quantum Metrology in
Dissipative Systems [8.920103626492315]
We look for the optimal control that maximizes quantum Fisher information for "twist and turn" problem.
We find that the optimal control is singular without dissipation but can become unbounded once the quantum decoherence is introduced.
arXiv Detail & Related papers (2022-04-30T00:02:57Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - A Projection Operator-based Newton Method for the Trajectory
Optimization of Closed Quantum Systems [0.0]
This paper develops a new general purpose solver for quantum optimal control based on the PRojection Operator Newton method for Trajectory Optimization, or PRONTO.
Specifically, the proposed approach uses a projection operator to incorporate the Schr"odinger equation directly into the cost function, which is then minimized using a quasi-Newton method.
The resulting method guarantees monotonic convergence at every iteration and quadratic convergence in proximity of the solution.
arXiv Detail & Related papers (2021-11-16T21:49:23Z) - Optimal solutions to quantum annealing using two independent control
functions [0.0]
We show that an optimal solution consists of both controls tuned at their upper bound for the whole evolution time.
We propose the use of a quantum optimal control technique adapted to limit the amplitude of the controls.
We show that the scheme with two-control functions yields a higher fidelity than the other schemes for the same evolution time.
arXiv Detail & Related papers (2021-10-26T16:54:17Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.