論文の概要: BGM: Building a Dynamic Guidance Map without Visual Images for
Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2010.03897v1
- Date: Thu, 8 Oct 2020 10:48:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 12:24:48.846544
- Title: BGM: Building a Dynamic Guidance Map without Visual Images for
Trajectory Prediction
- Title(参考訳): BGM:軌跡予測のための画像のない動的誘導マップの構築
- Authors: Beihao Xia, Conghao Wong, Heng Li, Shiming Chen, Qinmu Peng, Xinge You
- Abstract要約: 動的意味論を表現するためのガイダンスマップを構築するために,BGMというモデルを提案する。
BGMは、広く使用されているETHとUCYの2つのデータセットに対して、最先端の予測精度を達成する。
- 参考スコア(独自算出の注目度): 13.147991331213568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual images usually contain the informative context of the environment,
thereby helping to predict agents' behaviors. However, they hardly impose the
dynamic effects on agents' actual behaviors due to the respectively fixed
semantics. To solve this problem, we propose a deterministic model named BGM to
construct a guidance map to represent the dynamic semantics, which circumvents
to use visual images for each agent to reflect the difference of activities in
different periods. We first record all agents' activities in the scene within a
period close to the current to construct a guidance map and then feed it to a
Context CNN to obtain their context features. We adopt a Historical Trajectory
Encoder to extract the trajectory features and then combine them with the
context feature as the input of the social energy based trajectory decoder,
thus obtaining the prediction that meets the social rules. Experiments
demonstrate that BGM achieves state-of-the-art prediction accuracy on the two
widely used ETH and UCY datasets and handles more complex scenarios.
- Abstract(参考訳): 視覚イメージは通常、環境の情報的コンテキストを含み、エージェントの振る舞いを予測するのに役立つ。
しかし、それらはそれぞれ固定された意味論のためにエージェントの実際の振る舞いに動的効果を課すことはほとんどない。
この問題を解決するために,動的セマンティクスを表現するためのガイダンスマップを構築するためのBGMという決定論的モデルを提案する。
まず、シーン内のすべてのエージェントのアクティビティを、現在に近い期間に記録し、ガイダンスマップを作成し、コンテキストcnnに送信して、コンテキストの特徴を取得します。
過去の軌道エンコーダを用いて軌道の特徴を抽出し,社会エネルギーに基づく軌道デコーダの入力として文脈特徴と組み合わせ,社会ルールに適合する予測を得る。
実験により、BGMは広く使われているETHとUCYの2つのデータセットに対して最先端の予測精度を達成し、より複雑なシナリオを処理することが示された。
関連論文リスト
- Situational Scene Graph for Structured Human-centric Situation Understanding [15.91717913059569]
本研究では,人的対象関係とそれに対応する意味特性の両方をエンコードするために,SSGというグラフベースの表現を提案する。
セマンティックディテールは、当初単一のアクションを表現するように設計された状況フレームにインスパイアされた、事前に定義された役割と値として表現される。
間もなくコードとデータセットをリリースします。
論文 参考訳(メタデータ) (2024-10-30T09:11:25Z) - TK-Planes: Tiered K-Planes with High Dimensional Feature Vectors for Dynamic UAV-based Scenes [58.180556221044235]
本研究では,無人航空機(UAV)の認識における合成データと実世界データとの領域ギャップを埋める新しい手法を提案する。
私たちの定式化は、小さな動く物体や人間の行動からなる動的なシーンのために設計されています。
我々は,Okutama ActionやUG2など,挑戦的なデータセットの性能を評価する。
論文 参考訳(メタデータ) (2024-05-04T21:55:33Z) - Modeling Dynamic Environments with Scene Graph Memory [46.587536843634055]
本稿では,部分的に観測可能な動的グラフ上でのリンク予測という,新しいタイプのリンク予測問題を提案する。
私たちのグラフは、部屋とオブジェクトがノードであり、それらの関係がエッジにエンコードされるシーンの表現です。
エージェントの蓄積した観測結果をキャプチャする新しい状態表現 -- SGM (Scene Graph Memory) を提案する。
家庭で一般的に見られるセマンティックなパターンに従って,多様な動的グラフを生成する新しいベンチマークであるDynamic House Simulatorで,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-05-27T17:39:38Z) - Towards Explainable Motion Prediction using Heterogeneous Graph
Representations [3.675875935838632]
動き予測システムは、自動運転車が安全かつ効率的な計画を実行できるようにする交通シナリオの将来の挙動を捉えることを目的としている。
GNNベースのアプローチは、これらの相互作用を自然にモデル化するのに適しているため、近年注目を集めている。
本研究では,異なるアプローチを用いて動作予測システムの説明可能性を向上させることを目的とする。
論文 参考訳(メタデータ) (2022-12-07T17:43:42Z) - Perceive, Interact, Predict: Learning Dynamic and Static Clues for
End-to-End Motion Prediction [33.83033504607069]
PIPはエンドツーエンドのTransformerベースのフレームワークで、オンラインマッピング、オブジェクト検出、モーション予測を共同で、インタラクティブに行う。
PIPは、運転シーンの包括的な高レベル情報を提供し、下流の計画と制御に貢献する。
論文 参考訳(メタデータ) (2022-12-05T11:37:41Z) - GoRela: Go Relative for Viewpoint-Invariant Motion Forecasting [121.42898228997538]
精度や一般化を犠牲にすることなく、全てのエージェントとマップに対して効率的な共有符号化を提案する。
不均一空間グラフにおけるエージェントとマップ要素間の幾何学的関係を表現するために、ペアワイズ相対的な位置符号化を利用する。
我々のデコーダは視点非依存であり、レーングラフ上でエージェント目標を予測し、多様かつコンテキスト対応のマルチモーダル予測を可能にする。
論文 参考訳(メタデータ) (2022-11-04T16:10:50Z) - Wide and Narrow: Video Prediction from Context and Motion [54.21624227408727]
本稿では,これらの相補的属性を統合し,深層ネットワークを通した複雑なピクセルのダイナミックスを予測するフレームワークを提案する。
本研究では,非局所的な近隣表現を集約し,過去のフレーム上の文脈情報を保存するグローバルなコンテキスト伝搬ネットワークを提案する。
また,移動オブジェクトの動作をメモリに格納することで,適応的なフィルタカーネルを生成するローカルフィルタメモリネットワークを考案した。
論文 参考訳(メタデータ) (2021-10-22T04:35:58Z) - Decoder Fusion RNN: Context and Interaction Aware Decoders for
Trajectory Prediction [53.473846742702854]
本稿では,動き予測のための反復的,注意に基づくアプローチを提案する。
Decoder Fusion RNN (DF-RNN) は、リカレント動作エンコーダ、エージェント間マルチヘッドアテンションモジュール、コンテキスト認識デコーダで構成される。
提案手法の有効性をArgoverseモーション予測データセットで検証し,その性能を公開ベンチマークで示す。
論文 参考訳(メタデータ) (2021-08-12T15:53:37Z) - Augmented Transformer with Adaptive Graph for Temporal Action Proposal
Generation [79.98992138865042]
TAPGの長期的および局所的時間的コンテキストを利用するための適応グラフネットワーク(ATAG)を備えた拡張トランスを提案する。
具体的には、スニペット動作損失と前部ブロックを装着し、拡張トランスと呼ばれるバニラトランスを強化する。
位置情報と隣接特徴の差異をマイニングすることで局所時間文脈を構築するための適応型グラフ畳み込みネットワーク(gcn)を提案する。
論文 参考訳(メタデータ) (2021-03-30T02:01:03Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
交通参加者の行動の正確な予測は、自動運転車にとって必須の能力である。
本稿では, セマンティクスとドメイン知識を活かして, 様々な運転環境に対する新しい汎用表現を提案する。
論文 参考訳(メタデータ) (2020-04-07T00:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。