A Brief Review of Domain Adaptation
- URL: http://arxiv.org/abs/2010.03978v1
- Date: Wed, 7 Oct 2020 07:05:32 GMT
- Title: A Brief Review of Domain Adaptation
- Authors: Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, Hamid R. Arabnia
- Abstract summary: This paper focuses on unsupervised domain adaptation, where the labels are only available in the source domain.
It presents some successful shallow and deep domain adaptation approaches that aim to deal with domain adaptation problems.
- Score: 1.2043574473965317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical machine learning assumes that the training and test sets come from
the same distributions. Therefore, a model learned from the labeled training
data is expected to perform well on the test data. However, This assumption may
not always hold in real-world applications where the training and the test data
fall from different distributions, due to many factors, e.g., collecting the
training and test sets from different sources, or having an out-dated training
set due to the change of data over time. In this case, there would be a
discrepancy across domain distributions, and naively applying the trained model
on the new dataset may cause degradation in the performance. Domain adaptation
is a sub-field within machine learning that aims to cope with these types of
problems by aligning the disparity between domains such that the trained model
can be generalized into the domain of interest. This paper focuses on
unsupervised domain adaptation, where the labels are only available in the
source domain. It addresses the categorization of domain adaptation from
different viewpoints. Besides, It presents some successful shallow and deep
domain adaptation approaches that aim to deal with domain adaptation problems.
Related papers
- SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
This paper focuses on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on.
We propose a new approach called D$3$G to learn domain-specific models.
Our results show that D$3$G consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-06T08:11:16Z) - Self-balanced Learning For Domain Generalization [64.99791119112503]
Domain generalization aims to learn a prediction model on multi-domain source data such that the model can generalize to a target domain with unknown statistics.
Most existing approaches have been developed under the assumption that the source data is well-balanced in terms of both domain and class.
We propose a self-balanced domain generalization framework that adaptively learns the weights of losses to alleviate the bias caused by different distributions of the multi-domain source data.
arXiv Detail & Related papers (2021-08-31T03:17:54Z) - Domain Generalization via Gradient Surgery [5.38147998080533]
In real-life applications, machine learning models often face scenarios where there is a change in data distribution between training and test domains.
In this work, we characterize the conflicting gradients emerging in domain shift scenarios and devise novel gradient agreement strategies.
arXiv Detail & Related papers (2021-08-03T16:49:25Z) - VisDA-2021 Competition Universal Domain Adaptation to Improve
Performance on Out-of-Distribution Data [64.91713686654805]
The Visual Domain Adaptation (VisDA) 2021 competition tests models' ability to adapt to novel test distributions.
We will evaluate adaptation to novel viewpoints, backgrounds, modalities and degradation in quality.
Performance will be measured using a rigorous protocol, comparing to state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-07-23T03:21:51Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
Unsupervised domain adaptation is used in many machine learning applications where, during training, a model has access to unlabeled data in the target domain.
We derive a novel generalization bound for domain adaptation that exploits a new measure of discrepancy between distributions based on a variational characterization of f-divergences.
arXiv Detail & Related papers (2021-06-21T18:21:09Z) - Domain Impression: A Source Data Free Domain Adaptation Method [27.19677042654432]
Unsupervised domain adaptation methods solve the adaptation problem for an unlabeled target set, assuming that the source dataset is available with all labels.
This paper proposes a domain adaptation technique that does not need any source data.
Instead of the source data, we are only provided with a classifier that is trained on the source data.
arXiv Detail & Related papers (2021-02-17T19:50:49Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.
In this work, we consider the problem setting of domain generalization, where the training data are structured into domains and there may be multiple test time shifts.
We introduce the framework of adaptive risk minimization (ARM), in which models are directly optimized for effective adaptation to shift by learning to adapt on the training domains.
arXiv Detail & Related papers (2020-07-06T17:59:30Z) - Incremental Unsupervised Domain-Adversarial Training of Neural Networks [17.91571291302582]
In the context of supervised statistical learning, it is typically assumed that the training set comes from the same distribution that draws the test samples.
Here we take a different avenue and approach the problem from an incremental point of view, where the model is adapted to the new domain iteratively.
Our results report a clear improvement with respect to the non-incremental case in several datasets, also outperforming other state-of-the-art domain adaptation algorithms.
arXiv Detail & Related papers (2020-01-13T09:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.