VisDA-2021 Competition Universal Domain Adaptation to Improve
Performance on Out-of-Distribution Data
- URL: http://arxiv.org/abs/2107.11011v1
- Date: Fri, 23 Jul 2021 03:21:51 GMT
- Title: VisDA-2021 Competition Universal Domain Adaptation to Improve
Performance on Out-of-Distribution Data
- Authors: Dina Bashkirova, Dan Hendrycks, Donghyun Kim, Samarth Mishra, Kate
Saenko, Kuniaki Saito, Piotr Teterwak, Ben Usman
- Abstract summary: The Visual Domain Adaptation (VisDA) 2021 competition tests models' ability to adapt to novel test distributions.
We will evaluate adaptation to novel viewpoints, backgrounds, modalities and degradation in quality.
Performance will be measured using a rigorous protocol, comparing to state-of-the-art domain adaptation methods.
- Score: 64.91713686654805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Progress in machine learning is typically measured by training and testing a
model on the same distribution of data, i.e., the same domain. This
over-estimates future accuracy on out-of-distribution data. The Visual Domain
Adaptation (VisDA) 2021 competition tests models' ability to adapt to novel
test distributions and handle distributional shift. We set up unsupervised
domain adaptation challenges for image classifiers and will evaluate adaptation
to novel viewpoints, backgrounds, modalities and degradation in quality. Our
challenge draws on large-scale publicly available datasets but constructs the
evaluation across domains, rather that the traditional in-domain bench-marking.
Furthermore, we focus on the difficult "universal" setting where, in addition
to input distribution drift, methods may encounter missing and/or novel classes
in the target dataset. Performance will be measured using a rigorous protocol,
comparing to state-of-the-art domain adaptation methods with the help of
established metrics. We believe that the competition will encourage further
improvement in machine learning methods' ability to handle realistic data in
many deployment scenarios.
Related papers
- Better Practices for Domain Adaptation [62.70267990659201]
Domain adaptation (DA) aims to provide frameworks for adapting models to deployment data without using labels.
Unclear validation protocol for DA has led to bad practices in the literature.
We show challenges across all three branches of domain adaptation methodology.
arXiv Detail & Related papers (2023-09-07T17:44:18Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
Perspectives [16.68091981866261]
Unsupervised domain adaptation (UDA) is proposed to counter the performance drop on data in a target domain.
UDA has yielded promising results on natural image processing, video analysis, natural language processing, time-series data analysis, medical image analysis, etc.
arXiv Detail & Related papers (2022-08-15T20:05:07Z) - Domain Generalization for Activity Recognition via Adaptive Feature
Fusion [9.458837222079612]
We propose emphAdaptive Feature Fusion for Activity Recognition(AFFAR).
AFFAR learns to fuse the domain-invariant and domain-specific representations to improve the model's generalization performance.
We apply AFAR to a real application, i.e., the diagnosis of Children's Attention Deficit Hyperactivity Disorder(ADHD)
arXiv Detail & Related papers (2022-07-21T02:14:09Z) - One-Class Knowledge Distillation for Face Presentation Attack Detection [53.30584138746973]
This paper introduces a teacher-student framework to improve the cross-domain performance of face PAD with one-class domain adaptation.
Student networks are trained to mimic the teacher network and learn similar representations for genuine face samples of the target domain.
In the test phase, the similarity score between the representations of the teacher and student networks is used to distinguish attacks from genuine ones.
arXiv Detail & Related papers (2022-05-08T06:20:59Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Exploring Data Aggregation and Transformations to Generalize across
Visual Domains [0.0]
This thesis contributes to research on Domain Generalization (DG), Domain Adaptation (DA) and their variations.
We propose new frameworks for Domain Generalization and Domain Adaptation which make use of feature aggregation strategies and visual transformations.
We show how our proposed solutions outperform competitive state-of-the-art approaches in established DG and DA benchmarks.
arXiv Detail & Related papers (2021-08-20T14:58:14Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - A Brief Review of Domain Adaptation [1.2043574473965317]
This paper focuses on unsupervised domain adaptation, where the labels are only available in the source domain.
It presents some successful shallow and deep domain adaptation approaches that aim to deal with domain adaptation problems.
arXiv Detail & Related papers (2020-10-07T07:05:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.