Automatic generation of reviews of scientific papers
- URL: http://arxiv.org/abs/2010.04147v1
- Date: Thu, 8 Oct 2020 17:47:07 GMT
- Title: Automatic generation of reviews of scientific papers
- Authors: Anna Nikiforovskaya, Nikolai Kapralov, Anna Vlasova, Oleg Shpynov and
Aleksei Shpilman
- Abstract summary: We present a method for the automatic generation of a review paper corresponding to a user-defined query.
The first part identifies key papers in the area by their bibliometric parameters, such as a graph of co-citations.
The second stage uses a BERT based architecture that we train on existing reviews for extractive summarization of these key papers.
- Score: 1.1999555634662633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With an ever-increasing number of scientific papers published each year, it
becomes more difficult for researchers to explore a field that they are not
closely familiar with already. This greatly inhibits the potential for
cross-disciplinary research. A traditional introduction into an area may come
in the form of a review paper. However, not all areas and sub-areas have a
current review. In this paper, we present a method for the automatic generation
of a review paper corresponding to a user-defined query. This method consists
of two main parts. The first part identifies key papers in the area by their
bibliometric parameters, such as a graph of co-citations. The second stage uses
a BERT based architecture that we train on existing reviews for extractive
summarization of these key papers. We describe the general pipeline of our
method and some implementation details and present both automatic and expert
evaluations on the PubMed dataset.
Related papers
- An Instance-based Plus Ensemble Learning Method for Classification of Scientific Papers [2.0794749869068005]
This paper introduces a novel approach that combines instance-based learning and ensemble learning techniques for classifying scientific papers.
Experiments show that the proposed classification method is effective and efficient in categorizing papers into various research areas.
arXiv Detail & Related papers (2024-09-21T19:42:15Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
We propose RelevAI-Reviewer, an automatic system that conceptualizes the task of survey paper review as a classification problem.
We introduce a novel dataset comprised of 25,164 instances. Each instance contains one prompt and four candidate papers, each varying in relevance to the prompt.
We develop a machine learning (ML) model capable of determining the relevance of each paper and identifying the most pertinent one.
arXiv Detail & Related papers (2024-06-13T06:42:32Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
This paper proposes several article-level, field-normalized, and large language model-empowered bibliometric indicators to evaluate reviews.
The newly emerging AI-generated literature reviews are also appraised.
This work offers insights into the current challenges of literature reviews and envisions future directions for their development.
arXiv Detail & Related papers (2024-02-20T11:28:50Z) - Cracking Double-Blind Review: Authorship Attribution with Deep Learning [43.483063713471935]
We propose a transformer-based, neural-network architecture to attribute an anonymous manuscript to an author.
We leverage all research papers publicly available on arXiv amounting to over 2 million manuscripts.
Our method achieves an unprecedented authorship attribution accuracy, where up to 73% of papers are attributed correctly.
arXiv Detail & Related papers (2022-11-14T15:50:24Z) - Tag-Aware Document Representation for Research Paper Recommendation [68.8204255655161]
We propose a hybrid approach that leverages deep semantic representation of research papers based on social tags assigned by users.
The proposed model is effective in recommending research papers even when the rating data is very sparse.
arXiv Detail & Related papers (2022-09-08T09:13:07Z) - Can We Automate Scientific Reviewing? [89.50052670307434]
We discuss the possibility of using state-of-the-art natural language processing (NLP) models to generate first-pass peer reviews for scientific papers.
We collect a dataset of papers in the machine learning domain, annotate them with different aspects of content covered in each review, and train targeted summarization models that take in papers to generate reviews.
Comprehensive experimental results show that system-generated reviews tend to touch upon more aspects of the paper than human-written reviews.
arXiv Detail & Related papers (2021-01-30T07:16:53Z) - What's New? Summarizing Contributions in Scientific Literature [85.95906677964815]
We introduce a new task of disentangled paper summarization, which seeks to generate separate summaries for the paper contributions and the context of the work.
We extend the S2ORC corpus of academic articles by adding disentangled "contribution" and "context" reference labels.
We propose a comprehensive automatic evaluation protocol which reports the relevance, novelty, and disentanglement of generated outputs.
arXiv Detail & Related papers (2020-11-06T02:23:01Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
We propose a Hierarchical bi-directional self-attention Network framework (HabNet) for paper review rating prediction and recommendation.
Specifically, we leverage the hierarchical structure of the paper reviews with three levels of encoders: sentence encoder (level one), intra-review encoder (level two) and inter-review encoder (level three)
We are able to identify useful predictors to make the final acceptance decision, as well as to help discover the inconsistency between numerical review ratings and text sentiment conveyed by reviewers.
arXiv Detail & Related papers (2020-11-02T08:07:50Z) - Machine Identification of High Impact Research through Text and Image
Analysis [0.4737991126491218]
We present a system to automatically separate papers with a high from those with a low likelihood of gaining citations.
Our system uses both a visual classifier, useful for surmising a document's overall appearance, and a text classifier, for making content-informed decisions.
arXiv Detail & Related papers (2020-05-20T19:12:24Z) - From Standard Summarization to New Tasks and Beyond: Summarization with
Manifold Information [77.89755281215079]
Text summarization is the research area aiming at creating a short and condensed version of the original document.
In real-world applications, most of the data is not in a plain text format.
This paper focuses on the survey of these new summarization tasks and approaches in the real-world application.
arXiv Detail & Related papers (2020-05-10T14:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.