Self-Sampling for Neural Point Cloud Consolidation
- URL: http://arxiv.org/abs/2008.06471v3
- Date: Fri, 13 May 2022 09:19:55 GMT
- Title: Self-Sampling for Neural Point Cloud Consolidation
- Authors: Gal Metzer, Rana Hanocka, Raja Giryes, Daniel Cohen-Or
- Abstract summary: We introduce a novel technique for neural point cloud consolidation which learns from only the input point cloud.
We repeatedly self-sample the input point cloud with global subsets that are used to train a deep neural network.
We demonstrate the ability to consolidate point sets from a variety of shapes, while eliminating outliers and noise.
- Score: 83.31236364265403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel technique for neural point cloud consolidation which
learns from only the input point cloud. Unlike other point upsampling methods
which analyze shapes via local patches, in this work, we learn from global
subsets. We repeatedly self-sample the input point cloud with global subsets
that are used to train a deep neural network. Specifically, we define source
and target subsets according to the desired consolidation criteria (e.g.,
generating sharp points or points in sparse regions). The network learns a
mapping from source to target subsets, and implicitly learns to consolidate the
point cloud. During inference, the network is fed with random subsets of points
from the input, which it displaces to synthesize a consolidated point set. We
leverage the inductive bias of neural networks to eliminate noise and outliers,
a notoriously difficult problem in point cloud consolidation. The shared
weights of the network are optimized over the entire shape, learning non-local
statistics and exploiting the recurrence of local-scale geometries.
Specifically, the network encodes the distribution of the underlying shape
surface within a fixed set of local kernels, which results in the best
explanation of the underlying shape surface. We demonstrate the ability to
consolidate point sets from a variety of shapes, while eliminating outliers and
noise.
Related papers
- Learning Continuous Implicit Field with Local Distance Indicator for
Arbitrary-Scale Point Cloud Upsampling [55.05706827963042]
Point cloud upsampling aims to generate dense and uniformly distributed point sets from a sparse point cloud.
Previous methods typically split a sparse point cloud into several local patches, upsample patch points, and merge all upsampled patches.
We propose a novel approach that learns an unsigned distance field guided by local priors for point cloud upsampling.
arXiv Detail & Related papers (2023-12-23T01:52:14Z) - Parametric Surface Constrained Upsampler Network for Point Cloud [33.033469444588086]
We introduce a novel surface regularizer into the upsampler network by forcing the neural network to learn the underlying parametric surface represented by bicubic functions and rotation functions.
These designs are integrated into two different networks for two tasks that take advantages of upsampling layers.
The state-of-the-art experimental results on both tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-03-14T21:12:54Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - SSPU-Net: Self-Supervised Point Cloud Upsampling via Differentiable
Rendering [21.563862632172363]
We propose a self-supervised point cloud upsampling network (SSPU-Net) to generate dense point clouds without using ground truth.
To achieve this, we exploit the consistency between the input sparse point cloud and generated dense point cloud for the shapes and rendered images.
arXiv Detail & Related papers (2021-08-01T13:26:01Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
arXiv Detail & Related papers (2020-10-08T22:01:23Z) - Cascaded Refinement Network for Point Cloud Completion [74.80746431691938]
We propose a cascaded refinement network together with a coarse-to-fine strategy to synthesize the detailed object shapes.
Considering the local details of partial input with the global shape information together, we can preserve the existing details in the incomplete point set.
We also design a patch discriminator that guarantees every local area has the same pattern with the ground truth to learn the complicated point distribution.
arXiv Detail & Related papers (2020-04-07T13:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.