論文の概要: Deep Sequence Learning for Video Anticipation: From Discrete and
Deterministic to Continuous and Stochastic
- arxiv url: http://arxiv.org/abs/2010.04368v1
- Date: Fri, 9 Oct 2020 04:40:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 05:50:40.661153
- Title: Deep Sequence Learning for Video Anticipation: From Discrete and
Deterministic to Continuous and Stochastic
- Title(参考訳): ビデオ予測のための深部シーケンス学習:離散的・決定論的から連続的・確率的へ
- Authors: Sadegh Aliakbarian
- Abstract要約: ビデオ予測は、限られた部分的な観察を与えられた1/複数未来表現を予測するタスクである。
特に、この論文では、ビデオ予測の文献にいくつかの貢献をしている。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anticipation is the task of predicting one/multiple future
representation(s) given limited, partial observation. This is a challenging
task due to the fact that given limited observation, the future representation
can be highly ambiguous. Based on the nature of the task, video anticipation
can be considered from two viewpoints: the level of details and the level of
determinism in the predicted future. In this research, we start from
anticipating a coarse representation of a deterministic future and then move
towards predicting continuous and fine-grained future representations of a
stochastic process. The example of the former is video action anticipation in
which we are interested in predicting one action label given a partially
observed video and the example of the latter is forecasting multiple diverse
continuations of human motion given partially observed one. In particular, in
this thesis, we make several contributions to the literature of video
anticipation...
- Abstract(参考訳): ビデオ予測は、限られた部分的な観察を与えられた1/複数未来表現を予測するタスクである。
これは、限られた観察によって、将来の表現が極めて曖昧であるという事実から、難しい課題である。
タスクの性質に基づいて、ビデオ予測は、予測される未来における詳細レベルと決定論のレベルという2つの視点から考えることができる。
本研究では, 決定論的未来における粗い表現を予測し, 確率過程の連続的, きめ細かい未来表現を予測することから始める。
前者の例はビデオアクション予測であり、あるアクションラベルを部分的に観察されたビデオで予測することに興味があり、後者の例は、部分的に観察されたビデオで与えられる人間の動作の多種多様な継続を予測している。
特に、この論文では、ビデオ予測の文学にいくつかの貢献をしています。
関連論文リスト
- About Time: Advances, Challenges, and Outlooks of Action Understanding [57.76390141287026]
この調査は、様々なタスクにおけるユニモーダルおよびマルチモーダルな行動理解の進歩を包括的にレビューする。
我々は,現在普及している課題,広く採用されているデータセットの概要,そして最近の進歩を重視したセミナー作品の調査に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-22T18:09:27Z) - Gated Temporal Diffusion for Stochastic Long-Term Dense Anticipation [17.4088244981231]
長期的な行動予測は、自律運転や人間とロボットの相互作用など、多くのアプリケーションにとって重要な課題となっている。
本稿では,Gated Temporal Diffusion (GTD) ネットワークを提案する。
我々のモデルは、Breakfast、Ambly101、50Saladsの両方の決定論的設定で、最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-07-16T17:48:05Z) - DiffAnt: Diffusion Models for Action Anticipation [12.022815981853071]
将来の行動を予測することは本質的に不確実である。現在進行中の行動を含む観察ビデオセグメントを考えると、複数の行動が確実に続く可能性がある。
本研究では, 予測行動の予測を生成的視点から再考し, 拡散モデルを用いて, 様々な将来的行動の予測を行う。
コードとトレーニングされたモデルはGitHubで公開される予定です。
論文 参考訳(メタデータ) (2023-11-27T16:40:09Z) - Rethinking Learning Approaches for Long-Term Action Anticipation [32.67768331823358]
アクション予測は、ビデオの初期部分を観察した将来のアクションを予測することを含む。
本稿では,長期的行動予測を行う抗CIPATRについて紹介する。
本稿では,新しいトランスモデルを構築するための2段階学習手法を提案する。
論文 参考訳(メタデータ) (2022-10-20T20:07:30Z) - The Wisdom of Crowds: Temporal Progressive Attention for Early Action
Prediction [104.628661890361]
初期のアクション予測は、部分的に観察されたビデオから進行中のアクションを推測する。
本稿では,細粒度から粗粒度へのプログレッシブサンプリングにより,行動の進化を捉えたボトルネックに基づくアテンションモデルを提案する。
論文 参考訳(メタデータ) (2022-04-28T08:21:09Z) - A-ACT: Action Anticipation through Cycle Transformations [89.83027919085289]
未来を予測できる人間の能力が、機械学習アルゴリズムにどのように移行できるかを分析するために、一歩後退します。
人間の心理学に関する最近の研究は、発生を予測して、人間の脳が両方のシステムにカウントされていることを説明している。
本研究では,行動予測作業における各システムの影響について検討し,学習フレームワークに統合するためのパラダイムを導入する。
論文 参考訳(メタデータ) (2022-04-02T21:50:45Z) - Video Prediction at Multiple Scales with Hierarchical Recurrent Networks [24.536256844130996]
本稿では,異なるレベルの粒度の将来の結果を同時に予測できる新しい映像予測モデルを提案する。
空間的および時間的ダウンサンプリングを組み合わせることで、MSPredは長い時間的地平線上での抽象表現を効率的に予測することができる。
実験では,提案モデルが将来の映像フレームだけでなく,様々なシナリオにおける他の表現を正確に予測できることを実証した。
論文 参考訳(メタデータ) (2022-03-17T13:08:28Z) - Review of Video Predictive Understanding: Early ActionRecognition and
Future Action Prediction [39.966828592322315]
アクション予測は、ビデオ予測理解の重要なサブ領域である。
様々な数学的ツールが、これらの2つのタスクに対してコンピュータビジョン技術と共に広く採用されている。
深層畳み込みニューラルネットワークと繰り返しニューラルネットワークに依存する構造は、既存の視覚タスクの性能を改善するために広く提案されている。
論文 参考訳(メタデータ) (2021-07-11T22:46:52Z) - Panoptic Segmentation Forecasting [71.75275164959953]
我々の目標は、最近の観測結果から近い将来の予測を行うことです。
この予測能力、すなわち予測能力は、自律的なエージェントの成功に不可欠なものだと考えています。
そこで我々は,2成分モデルを構築した。一方のコンポーネントは,オードメトリーを予測して背景物の力学を学習し,他方のコンポーネントは検出された物の力学を予測する。
論文 参考訳(メタデータ) (2021-04-08T17:59:16Z) - Learning to Anticipate Egocentric Actions by Imagination [60.21323541219304]
我々は,エゴセントリックなアクション予測タスクについて検討し,エゴセントリックなビデオの再生に先立って,将来のアクション秒を予測する。
本手法は, EPIC Kitchens Action Precipation Challenge の既視テストセットと未確認テストセットの両方において, 従来手法を有意に上回った。
論文 参考訳(メタデータ) (2021-01-13T08:04:10Z) - Adversarial Generative Grammars for Human Activity Prediction [141.43526239537502]
将来予測のための逆生成文法モデルを提案する。
私たちの文法は、データ分散から生産ルールを学習できるように設計されています。
推論中に複数の生産ルールを選択することができると、予測される結果が異なる。
論文 参考訳(メタデータ) (2020-08-11T17:47:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。