Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces
- URL: http://arxiv.org/abs/2010.04376v1
- Date: Fri, 9 Oct 2020 05:35:27 GMT
- Title: Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces
- Authors: George C. Alexandropoulos and Sumudu Samarakoon and Mehdi Bennis and
Merouane Debbah
- Abstract summary: Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
- Score: 50.622375361505824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconfigurable Intelligent Surfaces (RISs) are recently gaining remarkable
attention as a low-cost, hardware-efficient, and highly scalable technology
capable of offering dynamic control of electro-magnetic wave propagation. Their
envisioned dense deployment over various obstacles of the, otherwise passive,
wireless communication environment has been considered as a revolutionary means
to transform them into network entities with reconfigurable properties,
providing increased environmental intelligence for diverse communication
objectives. One of the major challenges with RIS-empowered wireless
communications is the low-overhead dynamic configuration of multiple RISs,
which according to the current hardware designs have very limited computing and
storage capabilities. In this paper, we consider a typical communication pair
between two nodes that is assisted by a plurality of RISs, and devise
low-complexity supervised learning approaches for the RISs' phase
configurations. By assuming common tunable phases in groups of each RIS's unit
elements, we present multi-layer perceptron Neural Network (NN) architectures
that can be trained either with positioning values or the instantaneous channel
coefficients. We investigate centralized and individual training of the RISs,
as well as their federation, and assess their computational requirements. Our
simulation results, including comparisons with the optimal phase configuration
scheme, showcase the benefits of adopting individual NNs at RISs for the link
budget performance boosting.
Related papers
- Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
Reconfigurable intelligent surfaces (RISs) have a revolutionary capability to customize the radio propagation environment for wireless networks.
To fully exploit the advantages of RISs in wireless systems, the phases of the reflecting elements must be jointly designed with conventional communication resources.
This paper provides a review of current optimization methods and artificial intelligence-based methods for handling the constraints imposed by RIS.
arXiv Detail & Related papers (2022-04-28T09:26:14Z) - Differentially Private Federated Learning via Reconfigurable Intelligent
Surface [27.004823731436765]
Federated learning (FL) enables the collaborative training of a global model over decentralized local datasets without sharing them.
We propose a reconfigurable intelligent surface (RIS) empowered over-the-air FL system to alleviate the dilemma between learning accuracy and privacy.
arXiv Detail & Related papers (2022-03-31T13:45:02Z) - A Robust Deep Learning-Based Beamforming Design for RIS-assisted
Multiuser MISO Communications with Practical Constraints [4.727307803726522]
We consider a RIS-aided multiuser multiple-input single-output downlink communication system.
We develop a deep quantization neural network (DQNN) to simultaneously design the active and passive beamforming.
We extend the two proposed DQNN-based algorithms to the case that the discrete phase shifts and imperfect CSI are considered simultaneously.
arXiv Detail & Related papers (2021-11-12T03:53:20Z) - Channel Estimation and Hybrid Architectures for RIS-Assisted
Communications [6.677785070549226]
Reconfigurable intelligent surfaces (RISs) are considered as potential technologies for the upcoming sixth-generation (6G) wireless communication system.
Benefits brought by deploying one or multiple RISs include increased spectrum and energy efficiency, enhanced connectivity, extended communication coverage, reduced complexity at transceivers.
arXiv Detail & Related papers (2021-04-14T20:28:09Z) - Intelligent Reflecting Surface Aided Wireless Communications: A Tutorial [64.77665786141166]
Intelligent reflecting surface (IRS) is an enabling technology to engineer the radio signal prorogation in wireless networks.
IRS is capable of dynamically altering wireless channels to enhance the communication performance.
Despite its great potential, IRS faces new challenges to be efficiently integrated into wireless networks.
arXiv Detail & Related papers (2020-07-06T13:59:09Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.