A Robust Deep Learning-Based Beamforming Design for RIS-assisted
Multiuser MISO Communications with Practical Constraints
- URL: http://arxiv.org/abs/2111.06555v1
- Date: Fri, 12 Nov 2021 03:53:20 GMT
- Title: A Robust Deep Learning-Based Beamforming Design for RIS-assisted
Multiuser MISO Communications with Practical Constraints
- Authors: Wangyang Xu, Lu Gan, and Chongwen Huang
- Abstract summary: We consider a RIS-aided multiuser multiple-input single-output downlink communication system.
We develop a deep quantization neural network (DQNN) to simultaneously design the active and passive beamforming.
We extend the two proposed DQNN-based algorithms to the case that the discrete phase shifts and imperfect CSI are considered simultaneously.
- Score: 4.727307803726522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconfigurable intelligent surface (RIS) has become a promising technology to
improve wireless communication in recent years. It steers the incident signals
to create a favorable propagation environment by controlling the reconfigurable
passive elements with less hardware cost and lower power consumption. In this
paper, we consider a RIS-aided multiuser multiple-input single-output downlink
communication system. We aim to maximize the weighted sum-rate of all users by
joint optimizing the active beamforming at the access point and the passive
beamforming vector of the RIS elements. Unlike most existing works, we consider
the more practical situation with the discrete phase shifts and imperfect
channel state information (CSI). Specifically, for the situation that the
discrete phase shifts and perfect CSI are considered, we first develop a deep
quantization neural network (DQNN) to simultaneously design the active and
passive beamforming while most reported works design them alternatively. Then,
we propose an improved structure (I-DQNN) based on DQNN to simplify the
parameters decision process when the control bits of each RIS element are
greater than 1 bit. Finally, we extend the two proposed DQNN-based algorithms
to the case that the discrete phase shifts and imperfect CSI are considered
simultaneously. Our simulation results show that the two DQNN-based algorithms
have better performance than traditional algorithms in the perfect CSI case,
and are also more robust in the imperfect CSI case.
Related papers
- Resource-Efficient Sensor Fusion via System-Wide Dynamic Gated Neural Networks [16.0018681576301]
We propose a novel algorithmic strategy called Quantile-constrained Inference (QIC)
QIC makes joint, high-quality, swift decisions on all the above aspects of the system.
Our results confirm that QIC matches the optimum and outperforms its alternatives by over 80%.
arXiv Detail & Related papers (2024-10-22T06:12:04Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Reconfigurable Intelligent Surface Enabled Spatial Multiplexing with
Fully Convolutional Network [40.817290717344534]
Reconfigurable surface (RIS) is an emerging technology for wireless communication systems.
We propose to apply a fully convolutional network (WSNFC) to solve this problem.
We design a set of channel features that includes both cascaded channels via the RIS and the direct channel.
arXiv Detail & Related papers (2022-01-08T14:16:00Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) systems with discrete lens arrays have received great attention.
In this work, we investigate the joint design of a beam precoding matrix for mmWave MU-MIMO systems with DLA.
arXiv Detail & Related papers (2021-01-05T03:55:04Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
The reconfigurable intelligent surface (RIS) has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems.
In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL)
The proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-02-24T04:28:44Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.