論文の概要: Learning 3D Face Reconstruction with a Pose Guidance Network
- arxiv url: http://arxiv.org/abs/2010.04384v1
- Date: Fri, 9 Oct 2020 06:11:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 04:30:22.980262
- Title: Learning 3D Face Reconstruction with a Pose Guidance Network
- Title(参考訳): Pose Guidance Network を用いた3次元顔再構成の学習
- Authors: Pengpeng Liu, Xintong Han, Michael Lyu, Irwin King, Jia Xu
- Abstract要約: ポーズ誘導ネットワーク(PGN)を用いた単眼3次元顔再構成学習のための自己指導型学習手法を提案する。
まず,従来のパラメトリックな3次元顔の学習手法におけるポーズ推定のボトルネックを明らかにし,ポーズパラメータの推定に3次元顔のランドマークを活用することを提案する。
我々のデザインしたPGNでは、完全にラベル付けされた3Dランドマークと無制限にラベル付けされた未使用の顔画像で両方の顔から学習できる。
- 参考スコア(独自算出の注目度): 49.13404714366933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a self-supervised learning approach to learning monocular 3D face
reconstruction with a pose guidance network (PGN). First, we unveil the
bottleneck of pose estimation in prior parametric 3D face learning methods, and
propose to utilize 3D face landmarks for estimating pose parameters. With our
specially designed PGN, our model can learn from both faces with fully labeled
3D landmarks and unlimited unlabeled in-the-wild face images. Our network is
further augmented with a self-supervised learning scheme, which exploits face
geometry information embedded in multiple frames of the same person, to
alleviate the ill-posed nature of regressing 3D face geometry from a single
image. These three insights yield a single approach that combines the
complementary strengths of parametric model learning and data-driven learning
techniques. We conduct a rigorous evaluation on the challenging AFLW2000-3D,
Florence and FaceWarehouse datasets, and show that our method outperforms the
state-of-the-art for all metrics.
- Abstract(参考訳): ポーズ誘導ネットワーク(PGN)を用いた単眼3次元顔再構成学習のための自己指導型学習手法を提案する。
まず,事前のパラメトリック3次元顔学習法におけるポーズ推定のボトルネックを明らかにし,ポーズパラメータ推定に3次元顔ランドマークを利用する方法を提案する。
特別に設計されたpgnでは、完全にラベル付き3dランドマークとラベルなしの顔画像で両方の顔から学習できます。
さらに,同一人物の複数のフレームに埋め込まれた顔形状情報を活用し,単一の画像から3次元顔形状を後退させる不適切な性質を緩和する自己教師付き学習方式も拡張した。
これら3つの洞察は、パラメトリックモデル学習とデータ駆動学習技術の補完的な強みを組み合わせた単一のアプローチを生み出す。
AFLW2000-3D, Florence, およびFaceWarehouseのデータセットについて厳密な評価を行い, 提案手法がすべての指標に対して最先端であることを示す。
関連論文リスト
- FaceGPT: Self-supervised Learning to Chat about 3D Human Faces [69.4651241319356]
我々は、画像やテキストから3次元の人間の顔を推論するために、VLM(Large Vision-Language Models)のための自己教師型学習フレームワークFaceGPTを紹介した。
FaceGPTは、VLMのトークン空間に3Dフォーマブルフェイスモデルのパラメータ(3DMM)を埋め込むことで、この制限を克服する。
我々は,FaceGPTが高品質な3次元顔再構成を実現し,汎用的な視覚指導の能力を維持していることを示す。
論文 参考訳(メタデータ) (2024-06-11T11:13:29Z) - G-NeRF: Geometry-enhanced Novel View Synthesis from Single-View Images [45.66479596827045]
我々は,幾何誘導多視点合成手法により,幾何先行性を高めるための幾何強調型NeRF(G-NeRF)を提案する。
単一視点画像に対する多視点監視の欠如に対処するために,深度認識型トレーニングアプローチを設計する。
論文 参考訳(メタデータ) (2024-04-11T04:58:18Z) - 3D Face Reconstruction Using A Spectral-Based Graph Convolution Encoder [3.749406324648861]
本稿では,既存の2次元機能と3次元機能を統合し,モデル学習プロセスを導く革新的なアプローチを提案する。
我々のモデルはデータセットの組み合わせから2D-3Dデータペアを用いて訓練され、NoWベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-03-08T11:09:46Z) - Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and
Visual Geometry [3.970492757288025]
本稿では,深層学習と幾何学的手法に基づくハイブリッド手法を用いて,複数の画像から3次元頭部を再構築する手法を提案する。
U-netアーキテクチャに基づくエンコーダデコーダネットワークを提案し、合成データのみを学習する。
論文 参考訳(メタデータ) (2021-04-28T11:31:35Z) - Model-based 3D Hand Reconstruction via Self-Supervised Learning [72.0817813032385]
シングルビューのRGB画像から3Dハンドを再構成することは、様々な手構成と深さのあいまいさのために困難である。
ポーズ, 形状, テクスチャ, カメラ視点を共同で推定できる, 自己教師型3Dハンド再構成ネットワークであるS2HANDを提案する。
初めて手動アノテーションを使わずに、正確な3D手の再構築ネットワークを訓練できることを実証しました。
論文 参考訳(メタデータ) (2021-03-22T10:12:43Z) - Learning Complete 3D Morphable Face Models from Images and Videos [88.34033810328201]
本稿では,画像やビデオから顔形状,アルベド,表現の完全な3次元モデルを学ぶための最初のアプローチを提案する。
既存の手法よりも,学習モデルの方がより一般化し,高品質な画像ベース再構築につながることを示す。
論文 参考訳(メタデータ) (2020-10-04T20:51:23Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z) - Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware
Multi-view Geometry Consistency [40.56510679634943]
マルチビュー幾何整合性を利用した自己教師付きトレーニングアーキテクチャを提案する。
画素の整合性損失,奥行きの整合性損失,顔のランドマークに基づくエピポーラロスを含む,多視点整合性のための3つの新しい損失関数を設計する。
提案手法は精度が高く,特に多彩な表現,ポーズ,照明条件下では堅牢である。
論文 参考訳(メタデータ) (2020-07-24T12:36:09Z) - Deep 3D Portrait from a Single Image [54.634207317528364]
1枚の肖像画から人間の頭部の3次元形状を復元するための学習に基づくアプローチを提案する。
顔画像から3次元頭部再構成を学習するための2段階の幾何学的学習手法を提案する。
提案手法の精度を3次元画像と2次元画像のポーズ操作の両方で評価した。
論文 参考訳(メタデータ) (2020-04-24T08:55:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。