Bioinspired Bipedal Locomotion Control for Humanoid Robotics Based on
EACO
- URL: http://arxiv.org/abs/2010.04463v1
- Date: Fri, 9 Oct 2020 09:43:48 GMT
- Title: Bioinspired Bipedal Locomotion Control for Humanoid Robotics Based on
EACO
- Authors: Jingan Yang, Yang Peng
- Abstract summary: This work presents promoting global search capability and convergence rate of the EACO applied to humanoid robots in real-time.
We put a special focus on the EACO algorithm on a wide range of problems, from ACO, real-coded GAs, GAs with neural networks(NNs), particle swarm optimization(PSO) to complex robotics systems.
- Score: 1.0152838128195467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To construct a robot that can walk as efficiently and steadily as humans or
other legged animals, we develop an enhanced elitist-mutated ant colony
optimization~(EACO) algorithm with genetic and crossover operators in real-time
applications to humanoid robotics or other legged robots. This work presents
promoting global search capability and convergence rate of the EACO applied to
humanoid robots in real-time by estimating the expected convergence rate using
Markov chain. Furthermore, we put a special focus on the EACO algorithm on a
wide range of problems, from ACO, real-coded GAs, GAs with neural
networks~(NNs), particle swarm optimization~(PSO) to complex robotics systems
including gait synthesis, dynamic modeling of parameterizable trajectories and
gait optimization of humanoid robotics. The experimental results illustrate the
capability of this method to discover the premature convergence probability,
tackle successfully inherent stagnation, and promote the convergence rate of
the EACO-based humanoid robotics systems and demonstrated the applicability and
the effectiveness of our strategy for solving sophisticated optimization tasks.
We found reliable and fast walking gaits with a velocity of up to 0.47m/s using
the EACO optimization strategy. These findings have significant implications
for understanding and tackling inherent stagnation and poor convergence rate of
the EACO and provide new insight into the genetic architectures and control
optimization of humanoid robotics.
Related papers
- Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Structural Optimization of Lightweight Bipedal Robot via SERL [6.761861053481078]
This paper introduces the SERL (Structure Evolution Reinforcement Learning) algorithm, which combines reinforcement learning for locomotion tasks with evolution algorithms.
We successfully designed a bipedal robot named Wow Orin, where the optimal leg length are obtained through optimization based on body structure and motor torque.
arXiv Detail & Related papers (2024-08-28T08:34:05Z) - Improved Genetic Algorithm Based on Greedy and Simulated Annealing Ideas for Vascular Robot Ordering Strategy [7.51372615162241]
This study presents a comprehensive approach for optimizing the acquisition, utilization, and maintenance of ABLVR vascular robots in healthcare settings.
Considering the dynamic healthcare environment, our approach includes a robust resource allocation model for robotic vessels and operators.
We incorporate the unique requirements of the adaptive learning process for operators and the maintenance needs of robotic components.
arXiv Detail & Related papers (2024-03-28T15:14:03Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Human-Robot Skill Transfer with Enhanced Compliance via Dynamic Movement
Primitives [1.7901837062462316]
We introduce a systematic method to extract the dynamic features from human demonstration to auto-tune the parameters in the Dynamic Movement Primitives framework.
Our method was implemented into an actual human-robot setup to extract human dynamic features and used to regenerate the robot trajectories following both LfD and RL.
arXiv Detail & Related papers (2023-04-12T08:48:28Z) - Rearrange Indoor Scenes for Human-Robot Co-Activity [82.22847163761969]
We present an optimization-based framework for rearranging indoor furniture to accommodate human-robot co-activities better.
Our algorithm preserves the functional relations among furniture by integrating spatial and semantic co-occurrence extracted from SUNCG and ConceptNet.
Our experiments show that rearranged scenes provide an average of 14% more accessible space and 30% more objects to interact with.
arXiv Detail & Related papers (2023-03-10T03:03:32Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
The goal is to maximize the sum-rate of whole trajectories for multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots.
An integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D$3$QN) algorithm.
arXiv Detail & Related papers (2022-05-03T17:14:47Z) - Robotic Brain Storm Optimization: A Multi-target Collaborative Searching
Paradigm for Swarm Robotics [24.38312890501329]
This paper proposes a BSO-based collaborative searching framework for swarm robotics called Robotic BSO.
The proposed method can simulate the BSO's guided search characteristics and has an excellent prospect for multi-target searching problems for swarm robotics.
arXiv Detail & Related papers (2021-05-27T13:05:48Z) - Evolutionary Gait Transfer of Multi-Legged Robots in Complex Terrains [14.787379075870383]
This paper proposes a transfer learning-based evolutionary framework for gait optimization, named Tr-GO.
The idea is to initialize a high-quality population by using the technique of transfer learning, so any kind of population-based optimization algorithms can be seamlessly integrated into this framework.
The experimental results show the effectiveness of the proposed framework for the gait optimization problem based on three multi-objective evolutionary algorithms.
arXiv Detail & Related papers (2020-12-24T16:41:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.