Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search
- URL: http://arxiv.org/abs/2408.16890v1
- Date: Thu, 29 Aug 2024 20:22:22 GMT
- Title: Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search
- Authors: Cynthia Barnhart, Alexandre Jacquillat, Alexandria Schmid,
- Abstract summary: This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
- Score: 84.39855372157616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid deployment of robotics technologies requires dedicated optimization algorithms to manage large fleets of autonomous agents. This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations. The model maximizes throughput, while managing human workload at the workstations and congestion in the facility. We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation. The algorithm relies on an offline machine learning procedure to predict objective improvements based on subproblem features, and an online optimization model to generate a new subproblem at each iteration. In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches. In particular, our solution enhances the utilization of robotic fleets by coordinating robotic tasks for human operators to pick multiple items at once, and by coordinating robotic routes to avoid congestion in the facility.
Related papers
- Multi-Objective Algorithms for Learning Open-Ended Robotic Problems [1.0124625066746598]
Quadrupedal locomotion is a complex, open-ended problem vital to expanding autonomous vehicle reach.
Traditional reinforcement learning approaches often fall short due to training instability and sample inefficiency.
We propose a novel method leveraging multi-objective evolutionary algorithms as an automatic curriculum learning mechanism.
arXiv Detail & Related papers (2024-11-11T16:26:42Z) - Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses [1.2810395420131764]
Multi-Agent Path Finding (MAPF) is an important optimization problem underlying the deployment of robots in automated warehouses and factories.
We consider a realistic problem of online order delivery in a warehouse, where a fleet of robots bring the products belonging to each order from shelves to workstations.
This creates a stream of inter-dependent pickup and delivery tasks and the associated MAPF problem consists of computing realistic collision-free robot trajectories.
arXiv Detail & Related papers (2024-08-26T15:13:38Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Design Optimizer for Planar Soft-Growing Robot Manipulators [1.1888144645004388]
This work presents a novel approach for design optimization of soft-growing robots.
I optimize the kinematic chain of a soft manipulator to reach targets and avoid unnecessary overuse of material and resources.
I tested the proposed method on different tasks to access its optimality, which showed significant performance in solving the problem.
arXiv Detail & Related papers (2023-10-05T08:23:17Z) - Contribution \`a l'Optimisation d'un Comportement Collectif pour un
Groupe de Robots Autonomes [0.0]
This thesis studies the domain of collective robotics, and more particularly the optimization problems of multirobot systems.
The first contribution is the use of the Butterfly Algorithm Optimization (BOA) to solve the Unknown Area Exploration problem.
The second contribution is the development of a new simulation framework for benchmarking dynamic incremental problems in robotics.
arXiv Detail & Related papers (2023-06-10T21:49:08Z) - DC-MRTA: Decentralized Multi-Robot Task Allocation and Navigation in
Complex Environments [55.204450019073036]
We present a novel reinforcement learning based task allocation and decentralized navigation algorithm for mobile robots in warehouse environments.
We consider the problem of joint decentralized task allocation and navigation and present a two level approach to solve it.
We observe improvement up to 14% in terms of task completion time and up-to 40% improvement in terms of computing collision-free trajectories for the robots.
arXiv Detail & Related papers (2022-09-07T00:35:27Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z) - Multi-Robot Routing with Time Windows: A Column Generation Approach [19.425263342626007]
We consider the problem of coordinating a fleet of robots performing picking operations in a warehouse.
We propose an efficient optimization scheme that avoids consideration of every increment within the time windows.
We also propose a pricing algorithm that can efficiently solve the pricing subproblem.
arXiv Detail & Related papers (2021-03-16T03:39:42Z) - Large Scale Distributed Collaborative Unlabeled Motion Planning with
Graph Policy Gradients [122.85280150421175]
We present a learning method to solve the unlabelled motion problem with motion constraints and space constraints in 2D space for a large number of robots.
We employ a graph neural network (GNN) to parameterize policies for the robots.
arXiv Detail & Related papers (2021-02-11T21:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.