Anonymous Quantum Conference Key Agreement
- URL: http://arxiv.org/abs/2010.04534v1
- Date: Fri, 9 Oct 2020 12:49:26 GMT
- Title: Anonymous Quantum Conference Key Agreement
- Authors: Frederik Hahn, Jarn de Jong and Anna Pappa
- Abstract summary: Conference Key Agreement (CKA) is a cryptographic effort of multiple parties to establish a shared secret key.
We provide a definition of anonymity for general protocols and present a CKA protocol that is provably anonymous under realistic adversarial scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conference Key Agreement (CKA) is a cryptographic effort of multiple parties
to establish a shared secret key. In future quantum networks, generating secret
keys in an anonymous way is of tremendous importance for parties that want to
keep their shared key secret and at the same time protect their own identity.
We provide a definition of anonymity for general protocols and present a CKA
protocol that is provably anonymous under realistic adversarial scenarios. We
base our protocol on shared Greenberger-Horne-Zeilinger states, which have been
proposed as more efficient resources for CKA protocols, compared to bipartite
entangled resources. The existence of secure and anonymous protocols based on
multipartite entangled states provides a new insight on their potential as
resources and paves the way for further applications.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Quantum digital signature based on single-qubit without a trusted third-party [45.41082277680607]
We propose a brand new quantum digital signature protocol without a trusted third party only with qubit technology to further improve the security.
We prove that the protocol has information-theoretical unforgeability. Moreover, it satisfies other important secure properties, including asymmetry, undeniability, and expandability.
arXiv Detail & Related papers (2024-10-17T09:49:29Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Experimental anonymous quantum conferencing [72.27323884094953]
We experimentally implement the AQCKA task in a six-user quantum network using Greenberger-Horne-Zeilinger (GHZ)-state entanglement.
We also demonstrate that the protocol retains an advantage in a four-user scenario with finite key effects taken into account.
arXiv Detail & Related papers (2023-11-23T19:00:01Z) - Quantum Secret Reconstruction [2.8233507229238177]
This paper proposes the first quantum secret reconstruction protocol based on cluster states.
It is shown that the proposed protocol is secure against several common attacks.
arXiv Detail & Related papers (2023-06-15T05:24:29Z) - Experimental anonymous conference key agreement using linear cluster
states [0.0]
Greenberger-Horne-Zeilinger (GHZ) states have been introduced as resource states for anonymous key exchange protocols.
Here we demonstrate that linear cluster states can serve as a versatile and potentially scalable resource in such applications.
arXiv Detail & Related papers (2022-07-19T18:02:24Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Anonymous conference key agreement in linear quantum networks [0.29998889086656577]
Conference key agreement (CKA) is an extension of key distribution to multiple parties.
CKA can also be performed in a way that protects the identities of the participating parties, therefore providing anonymity.
We propose an anonymous CKA protocol for three parties that is implemented in a highly practical network setting.
arXiv Detail & Related papers (2022-05-18T18:38:52Z) - Secure Anonymous Conferencing in Quantum Networks [0.0]
We introduce a security framework for anonymous conference key agreement with different levels of anonymity.
We present efficient and noise-tolerant protocols exploiting multipartite Greenberger-Horne-Zeilinger (GHZ) states.
Our results strongly advocate the use of multipartite entanglement for cryptographic tasks involving several users.
arXiv Detail & Related papers (2021-11-09T19:09:34Z) - Anonymous Conference Key Agreement in Quantum Networks [0.0]
Quantum Conference Key Agreement (CKA) is a cryptographic effort of multiple parties to establish a shared secret key.
We provide the first protocol for Anonymous Quantum Conference Key Agreement.
arXiv Detail & Related papers (2020-07-15T21:17:41Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.