Experimental anonymous conference key agreement using linear cluster
states
- URL: http://arxiv.org/abs/2207.09487v1
- Date: Tue, 19 Jul 2022 18:02:24 GMT
- Title: Experimental anonymous conference key agreement using linear cluster
states
- Authors: Lukas R\"uckle, Jakob Budde, Jarn de Jong, Frederik Hahn, Anna Pappa,
Stefanie Barz
- Abstract summary: Greenberger-Horne-Zeilinger (GHZ) states have been introduced as resource states for anonymous key exchange protocols.
Here we demonstrate that linear cluster states can serve as a versatile and potentially scalable resource in such applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multipartite entanglement enables secure and anonymous key exchange between
multiple parties in a network. In particular Greenberger-Horne-Zeilinger (GHZ)
states have been introduced as resource states for anonymous key exchange
protocols, in which an anonymous subset of parties within a larger network
establishes a secret key. However, the use of other types of multipartite
entanglement for such protocols remains relatively unexplored. Here we
demonstrate that linear cluster states can serve as a versatile and potentially
scalable resource in such applications. We implemented an anonymous key
exchange protocol with four photons in a linear cluster state and established a
shared key between three parties in our network. We show how to optimize the
protocol parameters to account for noise and to maximize the finite key rate
under realistic conditions. As cluster states have been established as a
flexible resource in quantum computation, we expect that our demonstration
provides a first step towards their hybrid use for networked computing and
communication.
Related papers
- Experimental anonymous quantum conferencing [72.27323884094953]
We experimentally implement the AQCKA task in a six-user quantum network using Greenberger-Horne-Zeilinger (GHZ)-state entanglement.
We also demonstrate that the protocol retains an advantage in a four-user scenario with finite key effects taken into account.
arXiv Detail & Related papers (2023-11-23T19:00:01Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - Establishing shared secret keys on quantum line networks: protocol and
security [0.0]
We show the security of multi-user key establishment on a single line of quantum communication.
We consider a quantum communication architecture where qubit generation and measurement happen at the two ends of the line.
arXiv Detail & Related papers (2023-04-04T15:35:23Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - A scheme for multipartite entanglement distribution via separable
carriers [68.8204255655161]
We develop a strategy for entanglement distribution via separable carriers that can be applied to any number of network nodes.
We show that our protocol results in multipartite entanglement, while the carrier mediating the process is always in a separable state with respect to the network.
arXiv Detail & Related papers (2022-06-20T10:50:45Z) - Anonymous conference key agreement in linear quantum networks [0.29998889086656577]
Conference key agreement (CKA) is an extension of key distribution to multiple parties.
CKA can also be performed in a way that protects the identities of the participating parties, therefore providing anonymity.
We propose an anonymous CKA protocol for three parties that is implemented in a highly practical network setting.
arXiv Detail & Related papers (2022-05-18T18:38:52Z) - Secure Anonymous Conferencing in Quantum Networks [0.0]
We introduce a security framework for anonymous conference key agreement with different levels of anonymity.
We present efficient and noise-tolerant protocols exploiting multipartite Greenberger-Horne-Zeilinger (GHZ) states.
Our results strongly advocate the use of multipartite entanglement for cryptographic tasks involving several users.
arXiv Detail & Related papers (2021-11-09T19:09:34Z) - Anonymous Quantum Conference Key Agreement [0.0]
Conference Key Agreement (CKA) is a cryptographic effort of multiple parties to establish a shared secret key.
We provide a definition of anonymity for general protocols and present a CKA protocol that is provably anonymous under realistic adversarial scenarios.
arXiv Detail & Related papers (2020-10-09T12:49:26Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.