論文の概要: Gini in a Bottleneck: Sparse Molecular Representations for Graph
Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2010.04535v3
- Date: Tue, 24 Nov 2020 10:46:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 04:38:06.689321
- Title: Gini in a Bottleneck: Sparse Molecular Representations for Graph
Convolutional Neural Networks
- Title(参考訳): gini in a bottleneck: グラフ畳み込みニューラルネットワークのためのスパース分子表現
- Authors: Ryan Henderson, Djork-Arn\'e Clevert, Floriane Montanari
- Abstract要約: マルチタスクグラフ畳み込みニューラルネットワークにおいて、Giniインデックスに従って一定の重みを拘束することは、いくつかの目標に対する評価指標を劣化させるものではないことを示す。
次に、パブリックなQM9データセット上で量子化学ターゲットに関する概念実証実験を行い、独自の薬物様分子に対するADMETターゲットに関するより大きな実験を行った。
- 参考スコア(独自算出の注目度): 4.297070083645049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the nature of deep learning approaches, it is inherently difficult to
understand which aspects of a molecular graph drive the predictions of the
network. As a mitigation strategy, we constrain certain weights in a multi-task
graph convolutional neural network according to the Gini index to maximize the
"inequality" of the learned representations. We show that this constraint does
not degrade evaluation metrics for some targets, and allows us to combine the
outputs of the graph convolutional operation in a visually interpretable way.
We then perform a proof-of-concept experiment on quantum chemistry targets on
the public QM9 dataset, and a larger experiment on ADMET targets on proprietary
drug-like molecules. Since a benchmark of explainability in the latter case is
difficult, we informally surveyed medicinal chemists within our organization to
check for agreement between regions of the molecule they and the model
identified as relevant to the properties in question.
- Abstract(参考訳): 深層学習のアプローチの性質から、分子グラフのどの側面がネットワークの予測を駆動しているかを理解することは本質的に困難である。
緩和戦略として、学習した表現の「不等式」を最大化するために、Giniインデックスに従ってマルチタスクグラフ畳み込みニューラルネットワークの特定の重みを制約する。
この制約は,いくつかの対象に対する評価基準を低下させるものではなく,グラフ畳み込み操作の出力を視覚的に解釈可能な方法で組み合わせることを可能にする。
次に,公開qm9データセット上の量子化学標的に関する概念実証実験と,プロプライエタリな薬物様分子に対するadmet標的に関するより大きな実験を行った。
後者のケースにおける説明可能性のベンチマークは困難であるため,我々の組織内の薬剤師を非公式に調査し,それらの分子の領域と,その性質に関連するものと同定されたモデルとの一致を確認した。
関連論文リスト
- Investigating Graph Neural Networks and Classical Feature-Extraction Techniques in Activity-Cliff and Molecular Property Prediction [0.6906005491572401]
分子の破滅は、分子データの数値的特徴ベクトルへの変換を指す。
分子グラフから直接識別可能な特徴を学習する新しい手法として、メッセージパッシンググラフニューラルネットワーク(GNN)が登場した。
論文 参考訳(メタデータ) (2024-11-20T20:07:48Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
本稿では,分子特性予測のための自己教師付きグラフニューラルネットワークフレームワークであるDIG-Molを紹介する。
DIG-Molは2つの相互接続ネットワークと運動量蒸留ネットワークを統合し、分子特性を効率的に改善する。
我々は,様々な分子特性予測タスクにおける広範囲な実験的評価により,DIG-Molの最先端性能を確立した。
論文 参考訳(メタデータ) (2024-05-04T10:09:27Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
本稿では,グラフニューラルネットワーク (GNN) と多様体ニューラルネットワーク (MNN) の関係について検討する。
これらのグラフ上の畳み込みフィルタとニューラルネットワークが連続多様体上の畳み込みフィルタとニューラルネットワークに収束することを示す。
論文 参考訳(メタデータ) (2023-05-29T08:27:17Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
分子特性を予測するための階層型情報グラフニューラルネットワークフレームワーク(HiGNN)を提案する。
実験により、HiGNNは、多くの挑戦的な薬物発見関連ベンチマークデータセットに対して最先端の予測性能を達成することが示された。
論文 参考訳(メタデータ) (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
グラフは、医療領域において、非ユークリッドな非ユークリッドデータをユビキタスに表現し、分析するための強力なツールである。
近年の研究では、入力データサンプル間の関係を考慮すると、下流タスクに正の正の正則化効果があることが示されている。
タンパク質分類と脳イメージングのためのニューラルネットワークアーキテクチャであるGraph-in-Graph(GiG)を提案する。
論文 参考訳(メタデータ) (2022-04-01T10:01:37Z) - Learning Attributed Graph Representations with Communicative Message
Passing Transformer [3.812358821429274]
分子グラフ表現を改善するために,コミュニケーティブメッセージパッシングトランス (CoMPT) ニューラルネットワークを提案する。
分子を完全連結グラフとして扱う従来のトランスフォーマースタイルのGNNとは異なり、グラフ接続帰納バイアスを利用するメッセージ拡散機構を導入する。
論文 参考訳(メタデータ) (2021-07-19T11:58:32Z) - MEG: Generating Molecular Counterfactual Explanations for Deep Graph
Networks [11.291571222801027]
本稿では, 分子特性予測 t の文脈における深層グラフネットワークの説明可能性に取り組むための新しいアプローチを提案する。
我々は, 構造的類似度が高く, 予測特性の異なる(有意)化合物の形で, 特定の予測に対する情報的反実的説明を生成する。
モデルが非ML専門家に分子の近傍に焦点を絞った学習モデルに関する重要な洞察を伝達する方法を示す結果について議論する。
論文 参考訳(メタデータ) (2021-04-16T12:17:19Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
本稿では,ラベル付き分子とラベルなし分子の両方を組み込んだ,アクティブ半教師付きグラフニューラルネットワーク(ASGN)を提案する。
教師モデルでは,分子構造や分子分布から情報を共同で活用する汎用表現を学習するための,新しい半教師付き学習手法を提案する。
最後に,分子多様性の観点から,フレームワーク学習全体を通して情報的データを選択するための新しい能動的学習戦略を提案する。
論文 参考訳(メタデータ) (2020-07-07T04:22:39Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。