論文の概要: Learning Binary Decision Trees by Argmin Differentiation
- arxiv url: http://arxiv.org/abs/2010.04627v2
- Date: Mon, 14 Jun 2021 14:35:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 04:03:39.752797
- Title: Learning Binary Decision Trees by Argmin Differentiation
- Title(参考訳): アルグミン微分による二分決定木学習
- Authors: Valentina Zantedeschi, Matt J. Kusner, Vlad Niculae
- Abstract要約: ダウンストリームタスクのためにデータを分割するバイナリ決定木を学びます。
離散パラメータの混合整数プログラムを緩和する。
我々は、前方と後方のパスを効率的に計算するアルゴリズムを考案した。
- 参考スコア(独自算出の注目度): 34.9154848754842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of learning binary decision trees that partition data
for some downstream task. We propose to learn discrete parameters (i.e., for
tree traversals and node pruning) and continuous parameters (i.e., for tree
split functions and prediction functions) simultaneously using argmin
differentiation. We do so by sparsely relaxing a mixed-integer program for the
discrete parameters, to allow gradients to pass through the program to
continuous parameters. We derive customized algorithms to efficiently compute
the forward and backward passes. This means that our tree learning procedure
can be used as an (implicit) layer in arbitrary deep networks, and can be
optimized with arbitrary loss functions. We demonstrate that our approach
produces binary trees that are competitive with existing single tree and
ensemble approaches, in both supervised and unsupervised settings. Further,
apart from greedy approaches (which do not have competitive accuracies), our
method is faster to train than all other tree-learning baselines we compare
with. The code for reproducing the results is available at
https://github.com/vzantedeschi/LatentTrees.
- Abstract(参考訳): 下流タスクのためにデータを分割する二分決定木を学習する問題に対処する。
本稿では,argmin微分を用いて離散パラメータ(木横断とノードプラニング)と連続パラメータ(木分割関数と予測関数)を同時に学習することを提案する。
離散パラメータのための混合整数プログラムを緩やかに緩和することで、勾配が連続的なパラメータにプログラムを通せるようにする。
前方と後方のパスを効率的に計算するアルゴリズムを考案した。
これは、木学習手順を任意の深層ネットワークの(単純)層として使用することができ、任意の損失関数で最適化できることを意味する。
我々は,既存の単一木やアンサンブルのアプローチと競合する二分木を,教師なしと教師なしの両方で生成することを示した。
さらに、(競争力のある精度を持たない)強欲なアプローチとは別に、我々の手法は、私たちが比較した他のすべてのツリー学習ベースラインよりも速く訓練できる。
結果を再現するためのコードは、https://github.com/vzantedeschi/latenttreesで入手できる。
関連論文リスト
- Terminating Differentiable Tree Experts [77.2443883991608]
本稿では,変圧器と表現生成器の組み合わせを用いて木操作を学習するニューラルシンボリック微分木機械を提案する。
まず、専門家の混在を導入することで、各ステップで使用される一連の異なるトランスフォーマーレイヤを取り除きます。
また,モデルが自動生成するステップ数を選択するための新しい終端アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-02T08:45:38Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
メタ学習によってトレーニングされたトランスフォーマーベースのモデルであるMetaTreeを導入し、強力な決定木を直接生成する。
我々は、多くのデータセットに欲求決定木とグローバルに最適化された決定木の両方を適合させ、MetaTreeを訓練して、強力な一般化性能を実現する木のみを生成する。
論文 参考訳(メタデータ) (2024-02-06T07:40:53Z) - TreeDQN: Learning to minimize Branch-and-Bound tree [78.52895577861327]
Branch-and-Boundは、Mixed Linear Programsという形で最適化タスクを解決するための便利なアプローチである。
解法の効率は、分割する変数を選択するのに使用される分岐に依存する。
分岐を効率的に学習できる強化学習法を提案する。
論文 参考訳(メタデータ) (2023-06-09T14:01:26Z) - Parallel Tree Kernel Computation [0.0]
2つの有限木からなる木核の計算のための逐次アルゴリズムの並列実装を考案する。
その結果,提案した並列アルゴリズムは遅延の点で逐次アルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-05-12T18:16:45Z) - Discrete Tree Flows via Tree-Structured Permutations [5.929956715430168]
離散フローベースモデルは、離散関数の勾配が未定義あるいはゼロであるため、従来のディープラーニング手法では直接最適化できない。
提案手法は,決定木に基づく離散フローを開発することにより,計算負担を低減し,擬似勾配の必要性を解消することを目的としている。
論文 参考訳(メタデータ) (2022-07-04T23:11:04Z) - Active-LATHE: An Active Learning Algorithm for Boosting the Error
Exponent for Learning Homogeneous Ising Trees [75.93186954061943]
我々は、$rho$が少なくとも0.8$である場合に、エラー指数を少なくとも40%向上させるアルゴリズムを設計し、分析する。
我々の分析は、グラフの一部により多くのデータを割り当てるために、微小だが検出可能なサンプルの統計的変動を巧みに活用することに基づいている。
論文 参考訳(メタデータ) (2021-10-27T10:45:21Z) - Dive into Decision Trees and Forests: A Theoretical Demonstration [0.0]
決定木は"divide-and-conquer"の戦略を使用して、入力機能とラベル間の依存性に関する複雑な問題を小さなものに分割します。
近年, 計算広告, 推薦システム, 情報検索などの性能が大幅に向上している。
論文 参考訳(メタデータ) (2021-01-20T16:47:59Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z) - The Tree Ensemble Layer: Differentiability meets Conditional Computation [8.40843862024745]
我々は、異なる決定木(ソフトツリー)のアンサンブルからなるニューラルネットワークのための新しいレイヤを導入する。
異なる木は文学において有望な結果を示すが、典型的には条件計算をサポートしないため、訓練と推論が遅い。
我々は、空間性を利用する特殊前方及び後方伝播アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-02-18T18:05:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。