Robust Isometric Non-Rigid Structure-from-Motion
- URL: http://arxiv.org/abs/2010.04690v2
- Date: Wed, 2 Jun 2021 12:23:42 GMT
- Title: Robust Isometric Non-Rigid Structure-from-Motion
- Authors: Shaifali Parashar, Adrien Bartoli and Daniel Pizarro
- Abstract summary: Non-Rigid Structure-from-Motion (NRSfM) reconstructs a deformable 3D object from the correspondences established between monocular 2D images.
Current NRSfM methods lack statistical robustness, which is the ability to cope with correspondence errors.
We propose a three-step automatic pipeline to solve NRSfM robustly by exploiting isometry.
- Score: 29.229898443263238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-Rigid Structure-from-Motion (NRSfM) reconstructs a deformable 3D object
from the correspondences established between monocular 2D images. Current NRSfM
methods lack statistical robustness, which is the ability to cope with
correspondence errors.This prevents one to use automatically established
correspondences, which are prone to errors, thereby strongly limiting the scope
of NRSfM. We propose a three-step automatic pipeline to solve NRSfM robustly by
exploiting isometry. Step 1 computes the optical flow from correspondences,
step 2 reconstructs each 3D point's normal vector using multiple reference
images and integrates them to form surfaces with the best reference and step 3
rejects the 3D points that break isometry in their local neighborhood.
Importantly, each step is designed to discard or flag erroneous
correspondences. Our contributions include the robustification of optical flow
by warp estimation, new fast analytic solutions to local normal reconstruction
and their robustification, and a new scale-independent measure of 3D local
isometric coherence. Experimental results show that our robust NRSfM method
consistently outperforms existing methods on both synthetic and real datasets.
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Correspondence-Guided SfM-Free 3D Gaussian Splatting for NVS [52.3215552448623]
Novel View Synthesis (NVS) without Structure-from-Motion (SfM) pre-processed camera poses are crucial for promoting rapid response capabilities and enhancing robustness against variable operating conditions.
Recent SfM-free methods have integrated pose optimization, designing end-to-end frameworks for joint camera pose estimation and NVS.
Most existing works rely on per-pixel image loss functions, such as L2 loss.
In this study, we propose a correspondence-guided SfM-free 3D Gaussian splatting for NVS.
arXiv Detail & Related papers (2024-08-16T13:11:22Z) - An Accurate and Real-time Relative Pose Estimation from Triple Point-line Images by Decoupling Rotation and Translation [10.05584976985694]
3D-2D constraints provided by line features have been widely used in Visual Odometry (VO) and Structure-from-Motion (SfM) systems.
We propose a novel three-view pose solver based on rotation-translation decoupled estimation.
arXiv Detail & Related papers (2024-03-18T10:21:05Z) - NIKI: Neural Inverse Kinematics with Invertible Neural Networks for 3D
Human Pose and Shape Estimation [53.25973084799954]
We present NIKI (Neural Inverse Kinematics with Invertible Neural Network), which models bi-directional errors.
NIKI can learn from both the forward and inverse processes with invertible networks.
arXiv Detail & Related papers (2023-05-15T12:13:24Z) - Controllable GAN Synthesis Using Non-Rigid Structure-from-Motion [1.7205106391379026]
We present an approach for combining non-rigid structure-from-motion (NRSfM) with deep generative models.
We propose an efficient framework for discovering trajectories in the latent space of 2D GANs corresponding to changes in 3D geometry.
arXiv Detail & Related papers (2022-11-14T08:37:55Z) - A Dual-Masked Auto-Encoder for Robust Motion Capture with
Spatial-Temporal Skeletal Token Completion [13.88656793940129]
We propose an adaptive, identity-aware triangulation module to reconstruct 3D joints and identify the missing joints for each identity.
We then propose a Dual-Masked Auto-Encoder (D-MAE) which encodes the joint status with both skeletal-structural and temporal position encoding for trajectory completion.
In order to demonstrate the proposed model's capability in dealing with severe data loss scenarios, we contribute a high-accuracy and challenging motion capture dataset.
arXiv Detail & Related papers (2022-07-15T10:00:43Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.