Correspondence-Guided SfM-Free 3D Gaussian Splatting for NVS
- URL: http://arxiv.org/abs/2408.08723v1
- Date: Fri, 16 Aug 2024 13:11:22 GMT
- Title: Correspondence-Guided SfM-Free 3D Gaussian Splatting for NVS
- Authors: Wei Sun, Xiaosong Zhang, Fang Wan, Yanzhao Zhou, Yuan Li, Qixiang Ye, Jianbin Jiao,
- Abstract summary: Novel View Synthesis (NVS) without Structure-from-Motion (SfM) pre-processed camera poses are crucial for promoting rapid response capabilities and enhancing robustness against variable operating conditions.
Recent SfM-free methods have integrated pose optimization, designing end-to-end frameworks for joint camera pose estimation and NVS.
Most existing works rely on per-pixel image loss functions, such as L2 loss.
In this study, we propose a correspondence-guided SfM-free 3D Gaussian splatting for NVS.
- Score: 52.3215552448623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Novel View Synthesis (NVS) without Structure-from-Motion (SfM) pre-processed camera poses--referred to as SfM-free methods--is crucial for promoting rapid response capabilities and enhancing robustness against variable operating conditions. Recent SfM-free methods have integrated pose optimization, designing end-to-end frameworks for joint camera pose estimation and NVS. However, most existing works rely on per-pixel image loss functions, such as L2 loss. In SfM-free methods, inaccurate initial poses lead to misalignment issue, which, under the constraints of per-pixel image loss functions, results in excessive gradients, causing unstable optimization and poor convergence for NVS. In this study, we propose a correspondence-guided SfM-free 3D Gaussian splatting for NVS. We use correspondences between the target and the rendered result to achieve better pixel alignment, facilitating the optimization of relative poses between frames. We then apply the learned poses to optimize the entire scene. Each 2D screen-space pixel is associated with its corresponding 3D Gaussians through approximated surface rendering to facilitate gradient back propagation. Experimental results underline the superior performance and time efficiency of the proposed approach compared to the state-of-the-art baselines.
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - InstantSplat: Sparse-view SfM-free Gaussian Splatting in Seconds [91.77050739918037]
Novel view synthesis (NVS) from a sparse set of images has advanced significantly in 3D computer vision.
It relies on precise initial estimation of camera parameters using Structure-from-Motion (SfM)
In this study, we introduce a novel and efficient framework to enhance robust NVS from sparse-view images.
arXiv Detail & Related papers (2024-03-29T17:29:58Z) - Improving Robustness for Joint Optimization of Camera Poses and
Decomposed Low-Rank Tensorial Radiance Fields [26.4340697184666]
We propose an algorithm that allows joint refinement of camera pose and scene geometry represented by decomposed low-rank tensor.
We also propose techniques of smoothed 2D supervision, randomly scaled kernel parameters, and edge-guided loss mask.
arXiv Detail & Related papers (2024-02-20T18:59:02Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision.
We propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS)
arXiv Detail & Related papers (2023-12-14T15:31:33Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - NIKI: Neural Inverse Kinematics with Invertible Neural Networks for 3D
Human Pose and Shape Estimation [53.25973084799954]
We present NIKI (Neural Inverse Kinematics with Invertible Neural Network), which models bi-directional errors.
NIKI can learn from both the forward and inverse processes with invertible networks.
arXiv Detail & Related papers (2023-05-15T12:13:24Z) - DeepMLE: A Robust Deep Maximum Likelihood Estimator for Two-view
Structure from Motion [9.294501649791016]
Two-view structure from motion (SfM) is the cornerstone of 3D reconstruction and visual SLAM (vSLAM)
We formulate the two-view SfM problem as a maximum likelihood estimation (MLE) and solve it with the proposed framework, denoted as DeepMLE.
Our method significantly outperforms the state-of-the-art end-to-end two-view SfM approaches in accuracy and generalization capability.
arXiv Detail & Related papers (2022-10-11T15:07:25Z) - Differentiable Rendering with Perturbed Optimizers [85.66675707599782]
Reasoning about 3D scenes from their 2D image projections is one of the core problems in computer vision.
Our work highlights the link between some well-known differentiable formulations and randomly smoothed renderings.
We apply our method to 3D scene reconstruction and demonstrate its advantages on the tasks of 6D pose estimation and 3D mesh reconstruction.
arXiv Detail & Related papers (2021-10-18T08:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.