論文の概要: Image Generation With Neural Cellular Automatas
- arxiv url: http://arxiv.org/abs/2010.04949v2
- Date: Sat, 7 Nov 2020 03:34:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 23:11:49.300565
- Title: Image Generation With Neural Cellular Automatas
- Title(参考訳): 神経細胞オートマトンによる画像生成
- Authors: Mingxiang Chen, Zhecheng Wang
- Abstract要約: ニューラルセルオートマトン(NCA)を用いて画像(または他のアートワーク)を生成する新しい手法を提案する。
単一画像に基づいてNAAを1つずつ訓練する代わりに、このアイデアを可変オートエンコーダ(VAE)と組み合わせ、画像復元やスタイル融合といったいくつかの応用を探索した。
- 参考スコア(独自算出の注目度): 1.8275108630751844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel approach to generate images (or other
artworks) by using neural cellular automatas (NCAs). Rather than training NCAs
based on single images one by one, we combined the idea with variational
autoencoders (VAEs), and hence explored some applications, such as image
restoration and style fusion. The code for model implementation is available
online.
- Abstract(参考訳): 本稿では,ニューラルセルオートマトン(NCAs)を用いて画像(あるいは他のアートワーク)を生成する新しい手法を提案する。
単一画像に基づいてNAAを1つずつ訓練する代わりに、このアイデアを可変オートエンコーダ(VAE)と組み合わせ、画像復元やスタイル融合といったいくつかの応用を探索した。
モデル実装のコードはオンラインで入手できる。
関連論文リスト
- Diversified in-domain synthesis with efficient fine-tuning for few-shot
classification [64.86872227580866]
画像分類は,クラスごとのラベル付き例の小さなセットのみを用いて,画像分類器の学習を目的としている。
合成データを用いた数ショット学習における一般化問題に対処する新しいアプローチである DisEF を提案する。
提案手法を10種類のベンチマークで検証し,ベースラインを一貫して上回り,数ショット分類のための新しい最先端の手法を確立した。
論文 参考訳(メタデータ) (2023-12-05T17:18:09Z) - Not All Image Regions Matter: Masked Vector Quantization for
Autoregressive Image Generation [78.13793505707952]
既存の自己回帰モデルは、まず画像再構成のための潜伏空間のコードブックを学習し、学習したコードブックに基づいて自己回帰的に画像生成を完了する2段階生成パラダイムに従っている。
そこで本研究では,Masked Quantization VAE (MQ-VAE) Stackモデルを用いた2段階フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-23T02:15:53Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
本稿では、識別器アーキテクチャを再考することにより、生成画像の品質を向上させることを提案する。
シーンセグメンテーションマップや人体ポーズといったセマンティックインプットによって画像が生成されるという問題に焦点が当てられている。
我々は,意味的セグメンテーション,コンテンツ再構成,および粗い粒度の逆解析を行うのに十分な情報をエンコードする,共有潜在表現を学習することを目指している。
論文 参考訳(メタデータ) (2021-12-09T18:59:21Z) - Meta Internal Learning [88.68276505511922]
単一画像生成のための内部学習は、単一の画像に基づいて新しい画像を生成するようにジェネレータを訓練するフレームワークである。
本稿では,サンプル画像の内部統計をより効果的にモデル化するために,画像集合のトレーニングを可能にするメタラーニング手法を提案する。
以上の結果から, 得られたモデルは, 多数の共通画像アプリケーションにおいて, シングルイメージのGANと同程度に適していることがわかった。
論文 参考訳(メタデータ) (2021-10-06T16:27:38Z) - Generative Adversarial Neural Cellular Automata [13.850929935840659]
本稿では,1つのニューラルセルオートマタを用いて複数の出力を生成しながら,異なる初期環境を入力として使用する概念を提案する。
また、ニューラルセルオートマタとジェネレーティブアドリアネットワークを組み合わせた新しいアルゴリズムであるGANCAを紹介する。
論文 参考訳(メタデータ) (2021-07-19T06:23:11Z) - Unsupervised Novel View Synthesis from a Single Image [47.37120753568042]
単一の画像からの新しいビュー合成は、オブジェクトの単一入力画像から新しいビューを生成することを目的としている。
本研究の目的は、新しいビュー合成のための条件付き生成モデルの訓練を、完全に教師なしの方法で行えるようにすることで、この仮定を緩和することである。
論文 参考訳(メタデータ) (2021-02-05T16:56:04Z) - Neural Cellular Automata Manifold [84.08170531451006]
ニューラルセルラーオートマタのニューラルネットワークアーキテクチャは、より大きなNNにカプセル化可能であることを示す。
これにより、NAAの多様体を符号化する新しいモデルを提案し、それぞれが異なる画像を生成することができる。
生物学的には、我々のアプローチは転写因子の役割を担い、細胞の分化を促進する特定のタンパク質への遺伝子マッピングを調節する。
論文 参考訳(メタデータ) (2020-06-22T11:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。