Vehicle predictive trajectory patterns from isochronous data
- URL: http://arxiv.org/abs/2010.05026v2
- Date: Thu, 7 Jan 2021 14:30:56 GMT
- Title: Vehicle predictive trajectory patterns from isochronous data
- Authors: D. Damian
- Abstract summary: In this paper a detailed method is presented for assessing and mapping isochronous trajectory patterns in Graz (Austria) by using data fusion from video, ArduinoUno and the compass sensor HDMM01.
Results of this study show that the trajectory patterns are successful in predicting the likely evolution of a current trajectory pattern and can provide assessment on future driving situations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measuring and analyzing sensor data is the basic technique in vehicle
dynamics development and with the advancement of embedded and data acquisition
systems it is possible to analyze large data sets. In this paper a detailed
method is presented for assessing and mapping isochronous trajectory patterns
in Graz (Austria) by using data fusion from video, ArduinoUno and the compass
sensor HDMM01. The predictive isochronous trajectory patterns are derived from
the data values for a predefined time horizon. Both extreme driving behavior
and hazardous road geometries can be identified. It is possible to provide
instant road sensor data which can be used to compare the data from a
trajectory path as well as for different time instances. Results of this study
show that the trajectory patterns are successful in predicting the likely
evolution of a current trajectory pattern and can provide assessment on future
driving situations. The obtained data from this study can be useful as
reference in future city planning for energy saving driving pathways as well as
vehicle design and engineering improvements based on quantitative and relevant
dynamic measurements.
Related papers
- Pedestrian Trajectory Prediction with Missing Data: Datasets, Imputation, and Benchmarking [7.9449756510822915]
TrajImpute is a pedestrian trajectory prediction dataset that simulates missing coordinates in the observed trajectory.
In this work, we examine several imputation methods to reconstruct the missing coordinates and benchmark them for imputing pedestrian trajectories.
Our dataset provides a foundational resource for future research on imputation-aware pedestrian trajectory prediction.
arXiv Detail & Related papers (2024-10-31T19:42:42Z) - MapsTP: HD Map Images Based Multimodal Trajectory Prediction for Automated Vehicles [8.229161517598373]
We leverage ResNet-50 to extract image features from high-definition map data and use IMU sensor data to calculate speed, acceleration, and yaw rate.
A temporal probabilistic network is employed to compute potential trajectories, selecting the most accurate and highly probable trajectory paths.
arXiv Detail & Related papers (2024-07-08T10:45:30Z) - Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
This study proposes a trajectory prediction framework that combines Mixture Density Networks (MDN) and considers the driving heterogeneity to provide probabilistic and personalized predictions.
The proposed framework is tested based on a wide-range vehicle trajectory dataset.
arXiv Detail & Related papers (2023-12-19T12:56:56Z) - G-MEMP: Gaze-Enhanced Multimodal Ego-Motion Prediction in Driving [71.9040410238973]
We focus on inferring the ego trajectory of a driver's vehicle using their gaze data.
Next, we develop G-MEMP, a novel multimodal ego-trajectory prediction network that combines GPS and video input with gaze data.
The results show that G-MEMP significantly outperforms state-of-the-art methods in both benchmarks.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
In recent years, the classical occupancy grid map approach has been extended to dynamic occupancy grid maps.
This paper presents the further development of a previous approach.
The data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied.
arXiv Detail & Related papers (2020-08-09T09:26:30Z) - TrajGAIL: Generating Urban Vehicle Trajectories using Generative
Adversarial Imitation Learning [9.01310450044549]
This research suggests a generative modeling approach to learn the underlying distributions of urban vehicle trajectory data.
A generative model for urban vehicle trajectories can better generalize from training data by learning the underlying distribution of the training data.
TrajGAIL is a generative adversarial imitation learning framework for the urban vehicle trajectory generation.
arXiv Detail & Related papers (2020-07-28T13:17:51Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z) - Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context [152.0714518512966]
This work studies the problem of predicting the sequence of future actions for surround vehicles in real-world driving scenarios.
The first contribution is an automatic method to convert the trajectories recorded in real-world driving scenarios to action sequences with the help of HD maps.
The second contribution lies in applying the method to the well-known traffic agent tracking and prediction dataset Argoverse, resulting in 228,000 action sequences.
The third contribution is to propose a novel action sequence prediction method by integrating past positions and velocities of the traffic agents, map information and social context into a single end-to-end trainable neural network
arXiv Detail & Related papers (2020-04-29T14:59:58Z) - GISNet: Graph-Based Information Sharing Network For Vehicle Trajectory
Prediction [6.12727713172576]
Many AI-oriented companies, such as Google, Uber and DiDi, are investigating more accurate vehicle trajectory prediction algorithms.
In this paper, we propose a novel graph-based information sharing network (GISNet) that allows the information sharing between the target vehicle and its surrounding vehicles.
arXiv Detail & Related papers (2020-03-22T03:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.