Boosted EfficientNet: Detection of Lymph Node Metastases in Breast
Cancer Using Convolutional Neural Network
- URL: http://arxiv.org/abs/2010.05027v1
- Date: Sat, 10 Oct 2020 15:18:56 GMT
- Title: Boosted EfficientNet: Detection of Lymph Node Metastases in Breast
Cancer Using Convolutional Neural Network
- Authors: Jun Wang, Qianying Liu, Haotian Xie, Zhaogang Yang, Hefeng Zhou
- Abstract summary: The Convolutional Neutral Network (CNN) has been adapted to predict and classify lymph node metastasis in breast cancer.
We propose a novel data augmentation method named Random Center Cropping (RCC) to facilitate small resolution images.
- Score: 6.444922476853511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, advances in the development of whole-slide images have laid
a foundation for the utilization of digital images in pathology. With the
assistance of computer images analysis that automatically identifies tissue or
cell types, they have greatly improved the histopathologic interpretation and
diagnosis accuracy. In this paper, the Convolutional Neutral Network (CNN) has
been adapted to predict and classify lymph node metastasis in breast cancer.
Unlike traditional image cropping methods that are only suitable for large
resolution images, we propose a novel data augmentation method named Random
Center Cropping (RCC) to facilitate small resolution images. RCC enriches the
datasets while retaining the image resolution and the center area of images. In
addition, we reduce the downsampling scale of the network to further facilitate
small resolution images better. Moreover, Attention and Feature Fusion (FF)
mechanisms are employed to improve the semantic information of images.
Experiments demonstrate that our methods boost performances of basic CNN
architectures. And the best-performed method achieves an accuracy of 97.96% and
an AUC of 99.68% on RPCam datasets, respectively.
Related papers
- DCT-HistoTransformer: Efficient Lightweight Vision Transformer with DCT Integration for histopathological image analysis [0.0]
We introduce a novel lightweight breast cancer classification approach using Vision Transformers (ViTs)
By incorporating parallel processing pathways for Discrete Cosine Transform (DCT) Attention and MobileConv, we convert image data from the spatial domain to the frequency domain to utilize the benefits such as filtering out high frequencies in the image.
Our proposed model achieves an accuracy of 96.00% $pm$ 0.48% for binary classification and 87.85% $pm$ 0.93% for multiclass classification, which is comparable to state-of-the-art models.
arXiv Detail & Related papers (2024-10-24T21:16:56Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Robust Tumor Segmentation with Hyperspectral Imaging and Graph Neural
Networks [31.87960207119459]
We propose an improved methodology that leverages the spatial context of tiles for more robust and smoother segmentation.
To address the irregular shapes of tiles, we utilize Graph Neural Networks (GNNs) to propagate context information across neighboring regions.
Our findings demonstrate that context-aware GNN algorithms can robustly find tumor demarcations on HSI images.
arXiv Detail & Related papers (2023-11-20T14:07:38Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automatic Segmentation of Gross Target Volume of Nasopharynx Cancer
using Ensemble of Multiscale Deep Neural Networks with Spatial Attention [2.204996105506197]
We propose a 2.5D Convolutional Neural Network (CNN) to handle the difference of inplane and through-plane resolution.
We also propose a spatial attention module to enable the network to focus on small target, and use channel attention to further improve the segmentation performance.
arXiv Detail & Related papers (2021-01-27T08:20:49Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans [0.0]
We present an algorithm for multi-scale tumor (chimeric cell) detection in high resolution slide scans.
Our approach modifies the effective receptive field at different layers in a CNN so that objects with a broad range of varying scales can be detected in a single forward pass.
arXiv Detail & Related papers (2020-10-01T18:56:46Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.