論文の概要: Interpreting Multivariate Shapley Interactions in DNNs
- arxiv url: http://arxiv.org/abs/2010.05045v4
- Date: Wed, 3 Feb 2021 09:12:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 22:19:50.121679
- Title: Interpreting Multivariate Shapley Interactions in DNNs
- Title(参考訳): DNNにおける多変量シェープ相互作用の解釈
- Authors: Hao Zhang, Yichen Xie, Longjie Zheng, Die Zhang, Quanshi Zhang
- Abstract要約: 本稿では,多変量相互作用の観点から,ディープニューラルネットワーク(DNN)を説明することを目的とする。
本稿では,DNNの複数入力変数間の相互作用の意義を定義し,定量化する。
- 参考スコア(独自算出の注目度): 33.67263820904767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to explain deep neural networks (DNNs) from the perspective
of multivariate interactions. In this paper, we define and quantify the
significance of interactions among multiple input variables of the DNN. Input
variables with strong interactions usually form a coalition and reflect
prototype features, which are memorized and used by the DNN for inference. We
define the significance of interactions based on the Shapley value, which is
designed to assign the attribution value of each input variable to the
inference. We have conducted experiments with various DNNs. Experimental
results have demonstrated the effectiveness of the proposed method.
- Abstract(参考訳): 本稿では,多変量相互作用の観点から,ディープニューラルネットワーク(DNN)を説明することを目的とする。
本稿では,DNNの複数入力変数間の相互作用の意義を定義し,定量化する。
強い相互作用を持つ入力変数は通常連立を形成し、dnnによって記憶され、推論に使用されるプロトタイプの特徴を反映する。
本稿では,各入力変数の帰属値を推論に割り当てるように設計したShapley値に基づいて,相互作用の意義を定義する。
各種DNNを用いて実験を行った。
提案手法の有効性を実験的に検証した。
関連論文リスト
- Towards the Dynamics of a DNN Learning Symbolic Interactions [20.493304123269446]
近年の一連の定理は、与えられた入力サンプルに対して、入力変数間の相互作用の小さなセットを原始的推論パターンと見なせることを示すために証明されている。
本研究は,DNNの一般化能力が学習過程においてどのように変化するかの理論的メカニズムとして,相互作用の2相ダイナミクスを実証する。
論文 参考訳(メタデータ) (2024-07-27T07:34:49Z) - Two-Phase Dynamics of Interactions Explains the Starting Point of a DNN Learning Over-Fitted Features [68.3512123520931]
深層ニューラルネットワーク(DNN)学習相互作用のダイナミクスについて検討する。
本稿では,DNNが2段階の相互作用を学習していることを明らかにする。
第1相は主に中位と高位の相互作用を罰し、第2相は徐々に増加する順序の相互作用を学習する。
論文 参考訳(メタデータ) (2024-05-16T17:13:25Z) - Defining and Extracting generalizable interaction primitives from DNNs [22.79131582164054]
我々は、異なるディープニューラルネットワーク(DNN)で共有される相互作用を抽出する新しい方法を開発した。
実験により、抽出された相互作用は、異なるDNNが共有する共通知識をよりよく反映できることが示された。
論文 参考訳(メタデータ) (2024-01-29T17:21:41Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Technical Note: Defining and Quantifying AND-OR Interactions for Faithful and Concise Explanation of DNNs [24.099892982101398]
我々は、入力変数間の符号化された相互作用を定量化し、ディープニューラルネットワーク(DNN)を説明することを目的とする。
具体的には、まず相互作用の定義を再考し、次に相互作用に基づく説明に対する忠実さと簡潔さを正式に定義する。
論文 参考訳(メタデータ) (2023-04-26T06:33:31Z) - Discovering and Explaining the Representation Bottleneck of DNNs [21.121270460158712]
本稿では,ディープニューラルネットワーク(DNN)の特徴表現のボトルネックについて検討する。
入力変数間の多階相互作用に焦点をあて、その順序は相互作用の複雑さを表す。
DNNは単純すぎる相互作用と複雑すぎる相互作用の両方を符号化する傾向にあるが、通常は中間複雑性の相互作用を学習することができない。
論文 参考訳(メタデータ) (2021-11-11T14:35:20Z) - Discrete-Valued Neural Communication [85.3675647398994]
コンポーネント間で伝達される情報を離散表現に制限することは、有益なボトルネックであることを示す。
個人は「猫」が特定の経験に基づいて何であるかについて異なる理解を持っているが、共有された離散トークンは、個人間のコミュニケーションが内部表現の個人差によって切り離されることを可能にする。
我々は、量子化機構をベクトル量子化変分オートコーダから共有符号ブックによる多頭部離散化に拡張し、離散値ニューラル通信に利用する。
論文 参考訳(メタデータ) (2021-07-06T03:09:25Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
ニューラルネットワークでは、あらゆる相互作用する特徴は共通の隠蔽ユニットとの強い重み付けの接続に従う必要がある。
本稿では, 永続的ホモロジーの理論に基づいて, 相互作用強度を定量化するための新しい尺度を提案する。
PID(Persistence Interaction Detection)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-10-25T02:15:24Z) - Building Interpretable Interaction Trees for Deep NLP Models [38.50154540331266]
文中の成分間の相互作用の特性を解析するための6つの指標が提案されている。
本手法は,BERT,ELMo,LSTM,CNN,Transformerネットワーク内で符号化された単語の相互作用を定量化する。
論文 参考訳(メタデータ) (2020-06-29T10:26:50Z) - DEPARA: Deep Attribution Graph for Deep Knowledge Transferability [91.06106524522237]
本稿では,PR-DNNから学んだ知識の伝達可能性を検討するために,DreP Attribution gRAph (DEPARA)を提案する。
DEPARAでは、ノードは入力に対応し、PR-DNNの出力に関してベクトル化された属性マップで表現される。
2つのPR-DNNの知識伝達性は、対応するDEPARAの類似性によって測定される。
論文 参考訳(メタデータ) (2020-03-17T02:07:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。