論文の概要: Noise in Classification
- arxiv url: http://arxiv.org/abs/2010.05080v2
- Date: Fri, 13 Nov 2020 15:42:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 22:53:11.709826
- Title: Noise in Classification
- Title(参考訳): 分類における騒音
- Authors: Maria-Florina Balcan, Nika Haghtalab
- Abstract要約: 本章では,雑音の存在下での線形しきい値学習の計算的・統計的側面について考察する。
本稿では,データ生成過程における自然な仮定を生かして,これらのネガティブな結果を扱うためのアプローチについて議論する。
- 参考スコア(独自算出の注目度): 32.458986097202626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This chapter considers the computational and statistical aspects of learning
linear thresholds in presence of noise. When there is no noise, several
algorithms exist that efficiently learn near-optimal linear thresholds using a
small amount of data. However, even a small amount of adversarial noise makes
this problem notoriously hard in the worst-case. We discuss approaches for
dealing with these negative results by exploiting natural assumptions on the
data-generating process.
- Abstract(参考訳): 本章では,雑音の存在下での線形しきい値学習の計算的・統計的側面について考察する。
ノイズがない場合、少量のデータを用いて最適に近い線形閾値を効率的に学習するアルゴリズムがいくつか存在する。
しかし、たとえ少量の雑音であっても、最悪の場合、この問題は悪名高いほど難しい。
データ生成過程の自然な仮定を利用して、これらのネガティブな結果を扱うためのアプローチについて議論する。
関連論文リスト
- Improving Noise Robustness through Abstractions and its Impact on Machine Learning [2.6563873893593826]
ノイズは機械学習(ML)手法の適用に大きな影響を与える学習理論の基本的な問題である。
本稿では,データ抽象化を用いてノイズを緩和する手法を提案する。
目標は、抽象化によって生成された情報の損失を通じて、モデルの性能に対するノイズの影響を減らすことである。
論文 参考訳(メタデータ) (2024-06-12T17:14:44Z) - Understanding the Effect of Noise in LLM Training Data with Algorithmic
Chains of Thought [0.0]
思考の連鎖におけるノイズが,高度に制御された環境下でのタスクパフォーマンスに与える影響について検討する。
本研究では,CoTトレース処理後に適用される局所的な雑音と,トレース処理時にエラーを伝播する大域的なノイズであるテクトダイナミックノイズの2種類を定義した。
微調整されたモデルでは、高レベルの静的ノイズに対して非常に頑健であるが、低レベルの動的ノイズに対してかなり苦労している。
論文 参考訳(メタデータ) (2024-02-06T13:59:56Z) - Multiclass Learning from Noisy Labels for Non-decomposable Performance Measures [15.358504449550013]
非分解性性能尺度の2つのクラスに対して雑音ラベルから学習するアルゴリズムを設計する。
どちらの場合も、広範に研究されているクラス条件雑音モデルの下で、アルゴリズムのノイズ補正バージョンを開発する。
実験では,ラベルノイズ処理におけるアルゴリズムの有効性を実証した。
論文 参考訳(メタデータ) (2024-02-01T23:03:53Z) - Label Noise: Correcting the Forward-Correction [0.0]
ラベルノイズのあるデータセット上でニューラルネットワーク分類器を訓練することは、ノイズのあるラベルに過度に適合するリスクをもたらす。
ラベルノイズによる過度適合に対処する手法を提案する。
本研究は, オーバーフィッティングを緩和するために, トレーニング損失に低い限界を課すことを提案する。
論文 参考訳(メタデータ) (2023-07-24T19:41:19Z) - Latent Class-Conditional Noise Model [54.56899309997246]
本稿では,ベイズ的枠組みの下での雑音遷移をパラメータ化するためのLatent Class-Conditional Noise Model (LCCN)を提案する。
次に、Gibs sampler を用いて遅延真のラベルを効率的に推測できる LCCN の動的ラベル回帰法を導出する。
提案手法は,サンプルのミニバッチから事前の任意チューニングを回避するため,ノイズ遷移の安定な更新を保護している。
論文 参考訳(メタデータ) (2023-02-19T15:24:37Z) - Optimizing the Noise in Self-Supervised Learning: from Importance
Sampling to Noise-Contrastive Estimation [80.07065346699005]
GAN(Generative Adversarial Networks)のように、最適な雑音分布はデータ分布に等しくなると広く想定されている。
我々は、この自己教師型タスクをエネルギーベースモデルの推定問題として基礎づけるノイズ・コントラスト推定に目を向ける。
本研究は, 最適雑音のサンプリングは困難であり, 効率性の向上は, データに匹敵する雑音分布を選択することに比べ, 緩やかに行うことができると結論付けた。
論文 参考訳(メタデータ) (2023-01-23T19:57:58Z) - Identifying Hard Noise in Long-Tailed Sample Distribution [76.16113794808001]
NLT(Noisy Long-Tailed Classification)を紹介する。
ほとんどのノイズ除去法は、ハードノイズを特定するのに失敗する。
我々はH2E(Hard-to-Easy)と呼ばれる反復的な雑音学習フレームワークを設計する。
論文 参考訳(メタデータ) (2022-07-27T09:03:03Z) - The Optimal Noise in Noise-Contrastive Learning Is Not What You Think [80.07065346699005]
この仮定から逸脱すると、実際により良い統計的推定結果が得られることが示される。
特に、最適な雑音分布は、データと異なり、また、別の家族からさえも異なる。
論文 参考訳(メタデータ) (2022-03-02T13:59:20Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
本論文では,未知のノイズ統計による信号を堅牢に検出する一般化最大確率(ML)推定器を考案する。
実際には、システムノイズに関する統計的な知識はほとんどなく、場合によっては非ガウス的であり、衝動的であり、分析不可能である。
我々のフレームワークは、ノイズサンプルのみを必要とする教師なしの学習アプローチによって駆動される。
論文 参考訳(メタデータ) (2021-01-21T04:48:15Z) - Contextual Linear Bandits under Noisy Features: Towards Bayesian Oracles [65.9694455739978]
特徴不確実性の下での文脈線形帯域問題について検討する。
本分析により, 最適仮説は, 雑音特性に応じて, 基礎となる実現可能性関数から著しく逸脱しうることが明らかとなった。
これは、古典的アプローチが非自明な後悔境界を保証できないことを意味する。
論文 参考訳(メタデータ) (2017-03-03T21:39:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。