SJTU-NICT's Supervised and Unsupervised Neural Machine Translation
Systems for the WMT20 News Translation Task
- URL: http://arxiv.org/abs/2010.05122v1
- Date: Sun, 11 Oct 2020 00:40:05 GMT
- Title: SJTU-NICT's Supervised and Unsupervised Neural Machine Translation
Systems for the WMT20 News Translation Task
- Authors: Zuchao Li, Hai Zhao, Rui Wang, Kehai Chen, Masao Utiyama, Eiichiro
Sumita
- Abstract summary: We participated in four translation directions of three language pairs: English-Chinese, English-Polish, and German-Upper Sorbian.
Based on different conditions of language pairs, we have experimented with diverse neural machine translation (NMT) techniques.
In our submissions, the primary systems won the first place on English to Chinese, Polish to English, and German to Upper Sorbian translation directions.
- Score: 111.91077204077817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduced our joint team SJTU-NICT 's participation in the
WMT 2020 machine translation shared task. In this shared task, we participated
in four translation directions of three language pairs: English-Chinese,
English-Polish on supervised machine translation track, German-Upper Sorbian on
low-resource and unsupervised machine translation tracks. Based on different
conditions of language pairs, we have experimented with diverse neural machine
translation (NMT) techniques: document-enhanced NMT, XLM pre-trained language
model enhanced NMT, bidirectional translation as a pre-training, reference
language based UNMT, data-dependent gaussian prior objective, and BT-BLEU
collaborative filtering self-training. We also used the TF-IDF algorithm to
filter the training set to obtain a domain more similar set with the test set
for finetuning. In our submissions, the primary systems won the first place on
English to Chinese, Polish to English, and German to Upper Sorbian translation
directions.
Related papers
- HW-TSC's Submission to the CCMT 2024 Machine Translation Tasks [12.841065384808733]
We participate in the bilingual machine translation task and multi-domain machine translation task.
For these two translation tasks, we use training strategies such as regularized dropout, bidirectional training, data diversification, forward translation, back translation, alternated training, curriculum learning, and transductive ensemble learning.
arXiv Detail & Related papers (2024-09-23T09:20:19Z) - Choose the Final Translation from NMT and LLM hypotheses Using MBR Decoding: HW-TSC's Submission to the WMT24 General MT Shared Task [9.819139035652137]
This paper presents the submission of Huawei Translate Services Center (HW-TSC) to the WMT24 general machine translation (MT) shared task.
We use training strategies such as regularized dropout, bidirectional training, data diversification, forward translation, back translation, alternated training, curriculum learning, and transductive ensemble learning to train the neural machine translation (NMT) model.
arXiv Detail & Related papers (2024-09-23T08:25:37Z) - Towards Zero-Shot Multimodal Machine Translation [64.9141931372384]
We propose a method to bypass the need for fully supervised data to train multimodal machine translation systems.
Our method, called ZeroMMT, consists in adapting a strong text-only machine translation (MT) model by training it on a mixture of two objectives.
To prove that our method generalizes to languages with no fully supervised training data available, we extend the CoMMuTE evaluation dataset to three new languages: Arabic, Russian and Chinese.
arXiv Detail & Related papers (2024-07-18T15:20:31Z) - Confidence Based Bidirectional Global Context Aware Training Framework
for Neural Machine Translation [74.99653288574892]
We propose a Confidence Based Bidirectional Global Context Aware (CBBGCA) training framework for neural machine translation (NMT)
Our proposed CBBGCA training framework significantly improves the NMT model by +1.02, +1.30 and +0.57 BLEU scores on three large-scale translation datasets.
arXiv Detail & Related papers (2022-02-28T10:24:22Z) - Multilingual Machine Translation Systems from Microsoft for WMT21 Shared
Task [95.06453182273027]
This report describes Microsoft's machine translation systems for the WMT21 shared task on large-scale multilingual machine translation.
Our model submissions to the shared task were with DeltaLMnotefooturlhttps://aka.ms/deltalm, a generic pre-trained multilingual-decoder model.
Our final submissions ranked first on three tracks in terms of the automatic evaluation metric.
arXiv Detail & Related papers (2021-11-03T09:16:17Z) - Learning Domain Specific Language Models for Automatic Speech
Recognition through Machine Translation [0.0]
We use Neural Machine Translation as an intermediate step to first obtain translations of task-specific text data.
We develop a procedure to derive word confusion networks from NMT beam search graphs.
We demonstrate that NMT confusion networks can help to reduce the perplexity of both n-gram and recurrent neural network LMs.
arXiv Detail & Related papers (2021-09-21T10:29:20Z) - Self-supervised and Supervised Joint Training for Resource-rich Machine
Translation [30.502625878505732]
Self-supervised pre-training of text representations has been successfully applied to low-resource Neural Machine Translation (NMT)
We propose a joint training approach, $F$-XEnDec, to combine self-supervised and supervised learning to optimize NMT models.
arXiv Detail & Related papers (2021-06-08T02:35:40Z) - The LMU Munich System for the WMT 2020 Unsupervised Machine Translation
Shared Task [125.06737861979299]
This paper describes the submission of LMU Munich to the WMT 2020 unsupervised shared task, in two language directions.
Our core unsupervised neural machine translation (UNMT) system follows the strategy of Chronopoulou et al.
We ensemble our best-performing systems and reach a BLEU score of 32.4 on German->Upper Sorbian and 35.2 on Upper Sorbian->German.
arXiv Detail & Related papers (2020-10-25T19:04:03Z) - Unsupervised Bitext Mining and Translation via Self-trained Contextual
Embeddings [51.47607125262885]
We describe an unsupervised method to create pseudo-parallel corpora for machine translation (MT) from unaligned text.
We use multilingual BERT to create source and target sentence embeddings for nearest-neighbor search and adapt the model via self-training.
We validate our technique by extracting parallel sentence pairs on the BUCC 2017 bitext mining task and observe up to a 24.5 point increase (absolute) in F1 scores over previous unsupervised methods.
arXiv Detail & Related papers (2020-10-15T14:04:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.