HW-TSC's Submission to the CCMT 2024 Machine Translation Tasks
- URL: http://arxiv.org/abs/2409.14842v3
- Date: Tue, 8 Oct 2024 09:34:11 GMT
- Title: HW-TSC's Submission to the CCMT 2024 Machine Translation Tasks
- Authors: Zhanglin Wu, Yuanchang Luo, Daimeng Wei, Jiawei Zheng, Bin Wei, Zongyao Li, Hengchao Shang, Jiaxin Guo, Shaojun Li, Weidong Zhang, Ning Xie, Hao Yang,
- Abstract summary: We participate in the bilingual machine translation task and multi-domain machine translation task.
For these two translation tasks, we use training strategies such as regularized dropout, bidirectional training, data diversification, forward translation, back translation, alternated training, curriculum learning, and transductive ensemble learning.
- Score: 12.841065384808733
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents the submission of Huawei Translation Services Center (HW-TSC) to machine translation tasks of the 20th China Conference on Machine Translation (CCMT 2024). We participate in the bilingual machine translation task and multi-domain machine translation task. For these two translation tasks, we use training strategies such as regularized dropout, bidirectional training, data diversification, forward translation, back translation, alternated training, curriculum learning, and transductive ensemble learning to train neural machine translation (NMT) models based on the deep Transformer-big architecture. Furthermore, to explore whether large language model (LLM) can help improve the translation quality of NMT systems, we use supervised fine-tuning to train llama2-13b as an Automatic post-editing (APE) model to improve the translation results of the NMT model on the multi-domain machine translation task. By using these plyometric strategies, our submission achieves a competitive result in the final evaluation.
Related papers
- Towards Cross-Cultural Machine Translation with Retrieval-Augmented Generation from Multilingual Knowledge Graphs [18.84670051328337]
XC-Translate is the first large-scale, manually-created benchmark for machine translation.
KG-MT is a novel end-to-end method to integrate information from a multilingual knowledge graph into a neural machine translation model.
arXiv Detail & Related papers (2024-10-17T21:56:22Z) - Choose the Final Translation from NMT and LLM hypotheses Using MBR Decoding: HW-TSC's Submission to the WMT24 General MT Shared Task [9.819139035652137]
This paper presents the submission of Huawei Translate Services Center (HW-TSC) to the WMT24 general machine translation (MT) shared task.
We use training strategies such as regularized dropout, bidirectional training, data diversification, forward translation, back translation, alternated training, curriculum learning, and transductive ensemble learning to train the neural machine translation (NMT) model.
arXiv Detail & Related papers (2024-09-23T08:25:37Z) - Towards Zero-Shot Multimodal Machine Translation [64.9141931372384]
We propose a method to bypass the need for fully supervised data to train multimodal machine translation systems.
Our method, called ZeroMMT, consists in adapting a strong text-only machine translation (MT) model by training it on a mixture of two objectives.
To prove that our method generalizes to languages with no fully supervised training data available, we extend the CoMMuTE evaluation dataset to three new languages: Arabic, Russian and Chinese.
arXiv Detail & Related papers (2024-07-18T15:20:31Z) - Improving Neural Machine Translation by Denoising Training [95.96569884410137]
We present a simple and effective pretraining strategy Denoising Training DoT for neural machine translation.
We update the model parameters with source- and target-side denoising tasks at the early stage and then tune the model normally.
Experiments show DoT consistently improves the neural machine translation performance across 12 bilingual and 16 multilingual directions.
arXiv Detail & Related papers (2022-01-19T00:11:38Z) - Multilingual Machine Translation Systems from Microsoft for WMT21 Shared
Task [95.06453182273027]
This report describes Microsoft's machine translation systems for the WMT21 shared task on large-scale multilingual machine translation.
Our model submissions to the shared task were with DeltaLMnotefooturlhttps://aka.ms/deltalm, a generic pre-trained multilingual-decoder model.
Our final submissions ranked first on three tracks in terms of the automatic evaluation metric.
arXiv Detail & Related papers (2021-11-03T09:16:17Z) - The NiuTrans Machine Translation Systems for WMT21 [23.121382706331403]
This paper describes NiuTrans neural machine translation systems of the WMT 2021 news translation tasks.
We made submissions to 9 language directions, including English$leftarrow$$$Chinese, Japanese, Russian, Icelandic$$ and English$rightarrow$Hausa tasks.
arXiv Detail & Related papers (2021-09-22T02:00:24Z) - DiDi's Machine Translation System for WMT2020 [51.296629834996246]
We participate in the translation direction of Chinese->English.
In this direction, we use the Transformer as our baseline model.
As a result, our submission achieves a BLEU score of $36.6$ in Chinese->English.
arXiv Detail & Related papers (2020-10-16T06:25:48Z) - SJTU-NICT's Supervised and Unsupervised Neural Machine Translation
Systems for the WMT20 News Translation Task [111.91077204077817]
We participated in four translation directions of three language pairs: English-Chinese, English-Polish, and German-Upper Sorbian.
Based on different conditions of language pairs, we have experimented with diverse neural machine translation (NMT) techniques.
In our submissions, the primary systems won the first place on English to Chinese, Polish to English, and German to Upper Sorbian translation directions.
arXiv Detail & Related papers (2020-10-11T00:40:05Z) - Explicit Reordering for Neural Machine Translation [50.70683739103066]
In Transformer-based neural machine translation (NMT), the positional encoding mechanism helps the self-attention networks to learn the source representation with order dependency.
We propose a novel reordering method to explicitly model this reordering information for the Transformer-based NMT.
The empirical results on the WMT14 English-to-German, WAT ASPEC Japanese-to-English, and WMT17 Chinese-to-English translation tasks show the effectiveness of the proposed approach.
arXiv Detail & Related papers (2020-04-08T05:28:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.