論文の概要: Distributionally Robust Local Non-parametric Conditional Estimation
- arxiv url: http://arxiv.org/abs/2010.05373v1
- Date: Mon, 12 Oct 2020 00:11:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 06:22:54.435077
- Title: Distributionally Robust Local Non-parametric Conditional Estimation
- Title(参考訳): 分布ロバスト局所非パラメトリック条件推定
- Authors: Viet Anh Nguyen and Fan Zhang and Jose Blanchet and Erick Delage and
Yinyu Ye
- Abstract要約: 非パラメトリックな局所推定を生成する分布安定な新しい推定器を提案する。
一般には難解であるにもかかわらず、局所推定器は凸最適化によって効率的に見つけることができることを示す。
合成およびMNISTデータセットを用いた実験は、この新しいクラスの推定器の競合性能を示している。
- 参考スコア(独自算出の注目度): 22.423052432220235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional estimation given specific covariate values (i.e., local
conditional estimation or functional estimation) is ubiquitously useful with
applications in engineering, social and natural sciences. Existing data-driven
non-parametric estimators mostly focus on structured homogeneous data (e.g.,
weakly independent and stationary data), thus they are sensitive to adversarial
noise and may perform poorly under a low sample size. To alleviate these
issues, we propose a new distributionally robust estimator that generates
non-parametric local estimates by minimizing the worst-case conditional
expected loss over all adversarial distributions in a Wasserstein ambiguity
set. We show that despite being generally intractable, the local estimator can
be efficiently found via convex optimization under broadly applicable settings,
and it is robust to the corruption and heterogeneity of the data. Experiments
with synthetic and MNIST datasets show the competitive performance of this new
class of estimators.
- Abstract(参考訳): 特定の共変量値(すなわち局所条件推定や関数推定)が与えられた条件推定は、工学、社会科学、自然科学の応用において普遍的に有用である。
既存のデータ駆動の非パラメトリック推定器は、主に構造的同質データ(例えば、弱い独立性や定常性データ)に焦点を当てており、対向ノイズに敏感であり、低いサンプルサイズでは性能が良くない。
これらの問題を緩和するために、ワッサーシュタインの曖昧性集合における全ての逆分布に対する最悪の条件付き損失を最小限に抑え、非パラメトリック局所推定を生成する新しい分布頑健な推定器を提案する。
一般に難解であるにもかかわらず,局所的推定器は広く適用可能な条件下で凸最適化により効率的に発見でき,データの腐敗や不均一性に頑健である。
合成およびMNISTデータセットを用いた実験は、この新しいクラスの推定器の競合性能を示している。
関連論文リスト
- Optimal Robust Estimation under Local and Global Corruptions: Stronger Adversary and Smaller Error [10.266928164137635]
アルゴリズムによる頑健な統計は伝統的に、サンプルのごく一部が任意に破損する汚染モデルに焦点を当ててきた。
最近の汚染モデルでは, (i) 古典的ロバスト統計のように, 任意の外れ値のごく一部と (ii) 局所摂動, (ii) サンプルが平均的に有界シフトを行うことのできる2種類の汚染モデルを考える。
理論上最適誤差は, 偶発的局所摂動モデルの下で, 時間内に得られることを示す。
論文 参考訳(メタデータ) (2024-10-22T17:51:23Z) - A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
制約的な仮定を課さずに共分散推定器を構築するための原理的手法を提案する。
頑健な推定器は効率的に計算可能で一貫したものであることを示す。
合成および実データに基づく数値実験により、我々の頑健な推定器は最先端の推定器と競合していることが示された。
論文 参考訳(メタデータ) (2024-05-30T15:01:18Z) - Distributed Learning of Mixtures of Experts [0.0]
私たちは、自然に分散されたデータセットや、計算を分散する潜在的に大きなデータセットを扱います。
本研究では,データ分散サブセットに並列に適合する局所的推定器から還元推定器を構築するために,専門家(MoE)モデルとアグリゲーション戦略を併用した分散学習手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:26:13Z) - Optimizing the Noise in Self-Supervised Learning: from Importance
Sampling to Noise-Contrastive Estimation [80.07065346699005]
GAN(Generative Adversarial Networks)のように、最適な雑音分布はデータ分布に等しくなると広く想定されている。
我々は、この自己教師型タスクをエネルギーベースモデルの推定問題として基礎づけるノイズ・コントラスト推定に目を向ける。
本研究は, 最適雑音のサンプリングは困難であり, 効率性の向上は, データに匹敵する雑音分布を選択することに比べ, 緩やかに行うことができると結論付けた。
論文 参考訳(メタデータ) (2023-01-23T19:57:58Z) - Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium
Learning from Offline Datasets [101.5329678997916]
両プレイヤーゼロサムマルコフゲーム(MG)をオフライン環境で研究する。
目標は、事前収集されたデータセットに基づいて、近似的なナッシュ均衡(NE)ポリシーペアを見つけることである。
論文 参考訳(メタデータ) (2022-02-15T15:39:30Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Sequential Domain Adaptation by Synthesizing Distributionally Robust
Experts [14.656957226255628]
教師付きドメイン適応は、目標分布に近いソース分布からラベル付きトレーニングサンプルを追加することにより、予測精度を向上させることを目的としている。
我々は、提案した頑健な専門家の家系のBernsteinオンライン集約アルゴリズムを用いて、ターゲットサンプルの逐次的ストリームの予測を生成する。
論文 参考訳(メタデータ) (2021-06-01T08:51:55Z) - CoinPress: Practical Private Mean and Covariance Estimation [18.6419638570742]
多変量準ガウスデータの平均と共分散に対する単純な微分プライベート推定器を提案する。
これらの誤差率は最先端の理論的境界値と一致し, 従来手法よりも顕著に優れていたことを示す。
論文 参考訳(メタデータ) (2020-06-11T17:17:28Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDEは自己回帰密度推定のための自己アテンションに基づくアーキテクチャである。
本稿では, 生成したサンプルを用いた回帰, 分布外検出, トレーニングデータにおける雑音に対する頑健性などのタスクについて述べる。
論文 参考訳(メタデータ) (2020-04-06T07:32:51Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
そこで本研究では,対数様比統計量と正規化フローに基づく新しい分布アライメント手法を提案する。
入力領域の局所構造を保存する領域アライメントにおいて,結果の最小化を実験的に検証する。
論文 参考訳(メタデータ) (2020-03-26T22:10:04Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。