Anomaly Detection With Conditional Variational Autoencoders
- URL: http://arxiv.org/abs/2010.05531v1
- Date: Mon, 12 Oct 2020 08:39:37 GMT
- Title: Anomaly Detection With Conditional Variational Autoencoders
- Authors: Adrian Alan Pol, Victor Berger, Gianluca Cerminara, Cecile Germain and
Maurizio Pierini
- Abstract summary: We exploit the deep conditional variational autoencoder (CVAE) and we define an original loss function together with a metric that targets hierarchically structured data.
Our motivating application is a real world problem: monitoring the trigger system which is a basic component of many particle physics experiments at the CERN Large Hadron Collider.
- Score: 1.3541554606406663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploiting the rapid advances in probabilistic inference, in particular
variational Bayes and variational autoencoders (VAEs), for anomaly detection
(AD) tasks remains an open research question. Previous works argued that
training VAE models only with inliers is insufficient and the framework should
be significantly modified in order to discriminate the anomalous instances. In
this work, we exploit the deep conditional variational autoencoder (CVAE) and
we define an original loss function together with a metric that targets
hierarchically structured data AD. Our motivating application is a real world
problem: monitoring the trigger system which is a basic component of many
particle physics experiments at the CERN Large Hadron Collider (LHC). In the
experiments we show the superior performance of this method for classical
machine learning (ML) benchmarks and for our application.
Related papers
- Are Anomaly Scores Telling the Whole Story? A Benchmark for Multilevel Anomaly Detection [46.244213695024]
Anomaly detection (AD) is a machine learning task that identifies anomalies by learning patterns from normal training data.
Existing models primarily operate in a binary setting, and the anomaly scores they produce are usually based on the deviation of data points from normal data.
We propose a novel setting, Multilevel AD (MAD), in which the anomaly score represents the severity of anomalies in real-world applications.
Second, we introduce a novel benchmark, MAD-Bench, that evaluates models not only on their ability to detect anomalies, but also on how effectively their anomaly scores reflect severity.
arXiv Detail & Related papers (2024-11-21T14:18:37Z) - Performance Metric for Multiple Anomaly Score Distributions with Discrete Severity Levels [4.66313002591741]
We propose a weighted sum of the area under the receiver operating characteristic curve (WS-AUROC) for classifying severity levels based on anomaly scores.
We also propose an anomaly detector that achieves clear separation of distributions and outperforms the ablation models on the WS-AUROC and AUROC metrics.
arXiv Detail & Related papers (2024-08-09T02:17:49Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - ADT: Agent-based Dynamic Thresholding for Anomaly Detection [4.356615197661274]
We propose an agent-based dynamic thresholding (ADT) framework based on a deep Q-network.
An auto-encoder is utilized in this study to obtain feature representations and produce anomaly scores for complex input data.
ADT can adjust thresholds adaptively by utilizing the anomaly scores from the auto-encoder.
arXiv Detail & Related papers (2023-12-03T19:07:30Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Hierarchical Conditional Variational Autoencoder Based Acoustic Anomaly
Detection [8.136103644634348]
Existing approaches such as deep autoencoder (DAE), variational autoencoder (VAE), conditional variational autoencoder (CVAE) etc. have limited representation capabilities in the latent space.
We propose a new method named as hierarchical conditional variational autoencoder (HCVAE)
This method utilizes available taxonomic hierarchical knowledge about industrial facility to refine the latent space representation.
arXiv Detail & Related papers (2022-06-11T08:15:01Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.