DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation
- URL: http://arxiv.org/abs/2109.04247v1
- Date: Wed, 8 Sep 2021 14:07:55 GMT
- Title: DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation
- Authors: Antoine Chevrot and Alexandre Vernotte and Bruno Legeard
- Abstract summary: We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Automatic Dependent Surveillance Broadcast protocol is one of the latest
compulsory advances in air surveillance. While it supports the tracking of the
ever-growing number of aircraft in the air, it also introduces cybersecurity
issues that must be mitigated e.g., false data injection attacks where an
attacker emits fake surveillance information. The recent data sources and tools
available to obtain flight tracking records allow the researchers to create
datasets and develop Machine Learning models capable of detecting such
anomalies in En-Route trajectories. In this context, we propose a novel
multivariate anomaly detection model called Discriminatory Auto-Encoder (DAE).
It uses the baseline of a regular LSTM-based auto-encoder but with several
decoders, each getting data of a specific flight phase (e.g. climbing, cruising
or descending) during its training.To illustrate the DAE's efficiency, an
evaluation dataset was created using real-life anomalies as well as
realistically crafted ones, with which the DAE as well as three anomaly
detection models from the literature were evaluated. Results show that the DAE
achieves better results in both accuracy and speed of detection. The dataset,
the models implementations and the evaluation results are available in an
online repository, thereby enabling replicability and facilitating future
experiments.
Related papers
- TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data [0.017476232824732776]
We propose a temporal variational autoencoder (TeVAE) that can detect anomalies with minimal false positives when trained on unlabelled data.
When properly configured, TeVAE flags anomalies only 6% of the time wrongly and detects 65% of anomalies present.
arXiv Detail & Related papers (2024-07-09T13:32:33Z) - Video Anomaly Detection using GAN [0.0]
This thesis study aims to offer the solution for this use case so that human resources won't be required to keep an eye out for any unusual activity in the surveillance system records.
We have developed a novel generative adversarial network (GAN) based anomaly detection model.
arXiv Detail & Related papers (2023-11-23T16:41:30Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Detecting Anomalies using Generative Adversarial Networks on Images [0.0]
This paper proposes a novel Generative Adversarial Network (GAN) based model for anomaly detection.
It uses normal (non-anomalous) images to learn about the normality based on which it detects if an input image contains an anomalous/threat object.
Experiments are performed on three datasets, viz. CIFAR-10, MVTec AD (for industrial applications) and SIXray (for X-ray baggage security)
arXiv Detail & Related papers (2022-11-24T21:52:25Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - Self-awareness in intelligent vehicles: Feature based dynamic Bayesian
models for abnormality detection [4.251384905163326]
This paper aims to introduce a novel method to develop self-awareness in autonomous vehicles.
Time-series data from the vehicles are used to develop the data-driven Dynamic Bayesian Network (DBN) models.
An initial level collective awareness model that can perform joint anomaly detection in co-operative tasks is proposed.
arXiv Detail & Related papers (2020-10-29T09:29:47Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.