Signatures of the $\pi$-mode anomaly in (1+1) dimensional
periodically-driven topological/normal insulator heterostructures
- URL: http://arxiv.org/abs/2010.05688v1
- Date: Thu, 8 Oct 2020 20:24:16 GMT
- Title: Signatures of the $\pi$-mode anomaly in (1+1) dimensional
periodically-driven topological/normal insulator heterostructures
- Authors: Yiming Pan, Zhaopin Chen, Bing Wang, Eilon Poem
- Abstract summary: A pi-mode anomaly is proposed in a periodically-driven topological/normal (TI/NI) heterostructure.
For the first time, we experimentally observed the $pi$-mode domain wall in certain driven frequencies.
Our prediction and observation could pave a new avenue on exploring anomalies in both periodically-driven classical and quantum systems.
- Score: 1.8059692880799785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Akin to zero-mode anomalies, such as the chiral anomaly of edge states in
quantum Hall effect, in this work, a pi-mode anomaly is proposed in a 1+1
dimensional periodically-driven topological/normal insulator (TI/NI)
heterostructure. Usually, when coupling in a background gauge field, the zero
modes on domain walls would provide an anomalous current term that is
eventually canceled by additional boundary contributions from the topological
bulk, via the Callan-Harvey mechanism. This anomaly cancellation associated
with the generalization of bulk-boundary correspondence is called anomaly
inflow. Through our photonic modeling and setup of the Floquet TI/NI
heterostructure, for the first time, we experimentally observed the $\pi$-mode
domain wall in certain driven frequencies, which is always attached to the
reminiscent Floquet gauge that plays the vital role of an emergent background
field. Indeed, due to the possible emergence of Floquet gauge anomaly from the
driven topological bulk, the resultant $\pi$-mode anomaly can be matched on the
driven interface between Floquet domains. Prospectively, we believe our
prediction and observation could pave a new avenue on exploring anomalies in
both periodically-driven classical and quantum systems.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Wave packet dynamics and edge transport in anomalous Floquet topological
phases [0.0]
An anomalous Floquet topological phase can in general generate more robust chiral edge motion than a Haldane phase.
Our results demonstrate that the rich interplay of wave packet dynamics and topological edge states can serve as a versatile tool in ultracold quantum gases in optical lattices.
arXiv Detail & Related papers (2023-02-16T18:45:49Z) - Tuning anomalous Floquet topological bands with ultracold atoms [6.035032969908176]
Floquet engineering opens the way to create new topological states without counterparts in static systems.
We report the experimental realization and characterization of new anomalous topological states with high-precision Floquet engineering.
arXiv Detail & Related papers (2022-11-09T08:25:29Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Universal presence of time-crystalline phases and period-doubling
oscillations in one-dimensional Floquet topological insulators [2.3978553352626064]
We report a ubiquitous presence of topological Floquet time crystal (TFTC) in one-dimensional periodically-driven systems.
Our modeling of the time-crystalline 'ground state' can be easily realized in experimental platforms such as topological photonics and ultracold fields.
arXiv Detail & Related papers (2020-05-08T09:20:57Z) - Unified theory to characterize Floquet topological phases by quench
dynamics [6.496235214212858]
We propose a unified theory based on quantum quenches to characterize generic $d$-dimensional ($d$D) Floquet topological phases.
For a $d$D phase which is initially static and trivial, we introduce the quench dynamics by suddenly turning on the periodic driving.
This prediction provides a simple and unified characterization, in which one can not only extract the number of conventional and anomalous Floquet boundary modes, but also identify the topologically protected singularities in the phase bands.
arXiv Detail & Related papers (2020-04-29T08:18:22Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.